
 

 

 

API Reference 

Transact APIs Reference      AWS 
Transact Gateway Service     

 
 
Authored by:  Nicholas Leuci 
API Version 2  2024-06-21  PRELIMINARY  

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 

AWS Transact Gateway Service: Transact APIs Reference 



AWS Transact Gateway Service API Reference 

API Version 2024-Beta 
 

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not 

Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that 

disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their 

respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. 



AWS Transact Gateway Service API Reference 

API Version 2024- Beta 

Table of Contents 

Introduction and Needed Services ............................................................................................................... 1 

API Actions .................................................................................................................................................. 4 

Cart APIs ..................................................................................................................................................... 6 

CreateCart ......................................................................................................................................................... 6 

Request Syntax ............................................................................................................................................. 6 

URI Request Parameters .............................................................................................................................. 6 

Request Actions ........................................................................................................................................... 7 

Response Structure ...................................................................................................................................... 7 

Response Elements ...................................................................................................................................... 7 

Errors ............................................................................................................................................................ 7 

CreateCartLineItems ......................................................................................................................................... 9 

Request Syntax ............................................................................................................................................. 9 

URI Request Parameters .............................................................................................................................. 9 

Request Actions ........................................................................................................................................... 9 

Response Structure .................................................................................................................................... 10 

Response Elements .................................................................................................................................... 10 

Errors .......................................................................................................................................................... 10 

GetCart ............................................................................................................................................................ 12 

Request Syntax ........................................................................................................................................... 12 

URI Request Parameters ............................................................................................................................ 12 

Request Actions ......................................................................................................................................... 12 

Response Structure .................................................................................................................................... 13 

Response Elements .................................................................................................................................... 13 

Errors .......................................................................................................................................................... 13 

UpdateCart ..................................................................................................................................................... 14 

Request Syntax ........................................................................................................................................... 14 

URI Request Parameters ............................................................................................................................ 14 

Request Actions ......................................................................................................................................... 15 

Response Structure .................................................................................................................................... 16 

Response Elements .................................................................................................................................... 16 

Errors .......................................................................................................................................................... 17 

DeleteCart ....................................................................................................................................................... 18 

Request Syntax ........................................................................................................................................... 18 

URI Request Parameters ............................................................................................................................ 18 



AWS Transact Gateway Service API Reference 

API Version 2024-Beta 
 

Request Actions ......................................................................................................................................... 18 

Response Structure .................................................................................................................................... 18 

Response Elements .................................................................................................................................... 19 

Errors .......................................................................................................................................................... 19 

ListCarts .......................................................................................................................................................... 20 

Request Syntax ........................................................................................................................................... 20 

URI Request Parameters ............................................................................................................................ 20 

Request Actions ......................................................................................................................................... 21 

Response Structure .................................................................................................................................... 21 

Response Elements .................................................................................................................................... 21 

Errors .......................................................................................................................................................... 22 

Order APIs ................................................................................................................................................. 23 

CreateOrder .................................................................................................................................................... 23 

Request Syntax ........................................................................................................................................... 23 

URI Request Parameters ............................................................................................................................ 23 

Request Actions ......................................................................................................................................... 24 

Response Structure .................................................................................................................................... 24 

Response Elements .................................................................................................................................... 24 

Errors .......................................................................................................................................................... 24 

CreateOrderLineItems .................................................................................................................................... 26 

Request Syntax ........................................................................................................................................... 26 

URI Request Parameters ............................................................................................................................ 26 

Request Actions ......................................................................................................................................... 27 

Response Syntax ........................................................................................................................................ 27 

Response Elements .................................................................................................................................... 27 

Errors .......................................................................................................................................................... 28 

GetOrder ......................................................................................................................................................... 29 

Request Syntax ........................................................................................................................................... 29 

URI Request Parameters ............................................................................................................................ 29 

Request Actions ......................................................................................................................................... 29 

Response Structure .................................................................................................................................... 30 

Response Elements .................................................................................................................................... 30 

Errors .......................................................................................................................................................... 30 

UpdateOrder ................................................................................................................................................... 31 

Request Syntax ........................................................................................................................................... 31 

URI Request Parameters ............................................................................................................................ 31 



AWS Transact Gateway Service API Reference 

API Version 2024- Beta 

Request Actions ......................................................................................................................................... 32 

Response Syntax ........................................................................................................................................ 32 

Response Elements .................................................................................................................................... 33 

Errors .......................................................................................................................................................... 33 

UpdateOrderFulfillments ................................................................................................................................ 34 

Request Syntax ........................................................................................................................................... 34 

URI Request Parameters ............................................................................................................................ 35 

Request Actions ......................................................................................................................................... 35 

Response Syntax ........................................................................................................................................ 36 

Response Elements .................................................................................................................................... 36 

Errors .......................................................................................................................................................... 36 

UpdateOrderReturns ...................................................................................................................................... 38 

Request Syntax ........................................................................................................................................... 38 

URI Request Parameters ............................................................................................................................ 38 

Request Actions ......................................................................................................................................... 38 

Response Syntax ........................................................................................................................................ 38 

Response Elements .................................................................................................................................... 39 

Errors .......................................................................................................................................................... 39 

UpdateSignedOrder ........................................................................................................................................ 40 

Request Syntax ........................................................................................................................................... 40 

URI Request Parameters ............................................................................................................................ 40 

Request Actions ......................................................................................................................................... 40 

Response Syntax ........................................................................................................................................ 41 

Response Elements .................................................................................................................................... 41 

Errors .......................................................................................................................................................... 41 

DeleteOrder .................................................................................................................................................... 42 

Request Syntax ........................................................................................................................................... 42 

URI Request Parameters ............................................................................................................................ 42 

Request Actions ......................................................................................................................................... 42 

Response Syntax ........................................................................................................................................ 43 

Response Elements .................................................................................................................................... 43 

Errors .......................................................................................................................................................... 43 

ListOrders ........................................................................................................................................................ 44 

Request Syntax ........................................................................................................................................... 44 

URI Request Parameters ............................................................................................................................ 45 

Request Actions ......................................................................................................................................... 45 



AWS Transact Gateway Service API Reference 

API Version 2024-Beta 
 

Response Syntax ........................................................................................................................................ 46 

Response Elements .................................................................................................................................... 46 

Errors .......................................................................................................................................................... 46 

SignOrder ........................................................................................................................................................ 47 

Request Syntax ........................................................................................................................................... 47 

URI Request Parameters ............................................................................................................................ 47 

Request Actions ......................................................................................................................................... 47 

Response Structure .................................................................................................................................... 48 

Response Elements .................................................................................................................................... 48 

Errors .......................................................................................................................................................... 48 

CancelOrder .................................................................................................................................................... 49 

Request Syntax ........................................................................................................................................... 49 

URI Request Parameters ............................................................................................................................ 49 

Request Actions ......................................................................................................................................... 49 

Response Structure .................................................................................................................................... 50 

Response Elements .................................................................................................................................... 50 

Errors .......................................................................................................................................................... 50 

Catalog APIs .............................................................................................................................................. 51 

GetProduct ...................................................................................................................................................... 51 

Request Syntax ........................................................................................................................................... 51 

URI Request Parameters ............................................................................................................................ 51 

Request Actions ......................................................................................................................................... 52 

Response Structure .................................................................................................................................... 52 

Response Elements .................................................................................................................................... 52 

Errors .......................................................................................................................................................... 53 

BatchGetProduct ............................................................................................................................................ 55 

Request Syntax ........................................................................................................................................... 55 

URI Request Parameters ............................................................................................................................ 55 

Request Actions ......................................................................................................................................... 55 

Response Structure .................................................................................................................................... 56 

Response Elements .................................................................................................................................... 56 

Errors .......................................................................................................................................................... 57 

Pricing APIs ............................................................................................................................................... 59 

GetProductPrices ............................................................................................................................................ 59 

Request Syntax ........................................................................................................................................... 59 

URI Request Parameters ............................................................................................................................ 60 



AWS Transact Gateway Service API Reference 

API Version 2024- Beta 

Request Actions ......................................................................................................................................... 60 

Response Structure .................................................................................................................................... 60 

Response Elements .................................................................................................................................... 60 

Errors .......................................................................................................................................................... 61 

GetProductPricesForLineItems ....................................................................................................................... 62 

Request Syntax ........................................................................................................................................... 62 

URI Request Parameters ............................................................................................................................ 62 

Request Actions ......................................................................................................................................... 63 

Response Syntax ........................................................................................................................................ 63 

Response Elements .................................................................................................................................... 63 

Errors .......................................................................................................................................................... 64 

Tax API ...................................................................................................................................................... 65 

GetTaxesForLineItems .................................................................................................................................... 65 

Request Syntax ........................................................................................................................................... 66 

URI Request Parameters ............................................................................................................................ 66 

Request Actions ......................................................................................................................................... 67 

Response Syntax ........................................................................................................................................ 68 

Response Elements .................................................................................................................................... 68 

Errors .......................................................................................................................................................... 69 

Data Types ................................................................................................................................................ 70 

Cart Data Type ................................................................................................................................................ 70 

Properties ................................................................................................................................................... 70 

Order Data Type ............................................................................................................................................. 73 

Properties ................................................................................................................................................... 73 

LineItem Data Type ......................................................................................................................................... 77 

Properties ................................................................................................................................................... 77 

Product Data Type .......................................................................................................................................... 81 

Properties ................................................................................................................................................... 81 

Pricing Data Type ............................................................................................................................................ 86 

Properties ................................................................................................................................................... 86 

Tax Data Type ................................................................................................................................................. 89 

Properties ................................................................................................................................................... 89 

Common Parameters ................................................................................................................................. 93 

Common Errors ......................................................................................................................................... 96 

Language-Specific AWS SDKs ..................................................................................................................... 99 

 





AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  1 

Introduction and Needed Services 

The AWS Transact Gateway Service is a cloud-based set of composable server system solutions available for 

the Retailer Developer intended as the primary user. This document defines and establishes API standards for 

AWS Transact Order Management APIs to enable the Retailer Developer to create a shopping experience for 

shoppers to capture a cart, checkout their cart, place, cancel and return an order. These APIs are intended for 

both online eCommerce and in-person Point of Sale shopping experiences. 

All AWS Transact Gateway Service API operations are Amazon-authenticated and certificate-signed. They not 

only require the use of the AWS SDK, but also allow for the exclusive use of AWS Identity and Access 

Management users and roles to help facilitate access, trust, and permission policies.  Alternatively, retailers 

can make REST calls to Transact APIs and build the aws auth sigv4 headers themselves, although it 

would be more work than using the provided AWS Transact SDKs. 

This document describes the Cart and Order APIs that are at the core of the Transact services for the retailer 

client apps to call. These APIs are developed in smithy, an Amazon AWS internal Interface Definition Language 

(IDL). For both Cart and Order, Transact will call various internal APIs to create, read, update, delete, and list 

carts and orders. For simplicity, this document will bias towards modeling Cart and Order domain models 

uniformly as much as possible.  

 

Here is a summary of the needed services for the Cart and Order APIs described in this document. 

Transact Cart functional services: 

1. Create a cart: A retailer should be able to use Transact to create a cart with a minimum of one product 
item. 

2. Add a line item to cart: A retailer should be able to use Transact to add one or more line items to a 
cart. 

3. Delete a line item from cart: A retailer should be able to use Transact to delete a line item from a cart. 
4. Edit cart line item quantity: A retailer should be able to use Transact to edit the line item quantity. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  2 

5. Get cart by ID: A retailer should be able to get a cart object from Transact by the Cart ID. 
6. Search / list carts: Retailer should be able to get a list of carts meeting certain criteria. 
7. Edit cart metadata: Retailer should be able to edit cart metadata (shopper ID, session ID, client ID, 

brand ID, store ID). 
8. Delete cart: Retailer should be able to discard a cart. 

1. Delete stale orders: Transact must provide a service to: 
1. periodically mark for deletion those carts which have not been updated for longer than 

some maximum time configured by the retailer. 
2. periodically delete carts that have been marked for deletion. 

9. Label cart: A retailer should be able to label a cart with a retailer-provided arbitrary label (e.g. 
“Archived”, “Saved”, “Active”, “Wishlist”, “Cart”, “Grocery”, “John’s Cart”, etc.). 

10. Validate cart: A retailer should be able to pass in a cart object to be validated by Transact, in case the 
client has reasons for creating or managing carts outside of Transact. 

Transact Order functional services: 

1. Create an order: A retailer should be able to create an order so that a retailer and shopper can agree 
on the terms of a “sales contract”. 

2. Update orders: A retailer should be able to update an order’s data or add new data so that negotiation 
failures can be resolved and so that item quantities can be adjusted. 

3. Negotiate order (create/update/validate order): A retailer should be able to negotiate an order, so 
that it can attempt to validate the contents of the order and generate a negotiated contract it can 
eventually finalize / sign on behalf of the customer. 

4. Discard order: As a client, I need to be able to discard a “Created” or “Negotiated” order that I know 
will not become Finalized, so that it can be deleted and so that I’m not charged for it’s storage. 

1. Discard stale orders: Transact must provide a service to: 
1. periodically mark for deletion those orders which have been “Created” and not updated 

for longer than some maximum time. 
2. periodically mark for deletion those orders which have been “Negotiated” but have not 

been finalized prior to their TTL. 
3. periodically delete orders that have been marked for deletion. 

5. Finalize order: As a client, I need to be able to “finalize” or “sign” and order, so that I can reflect a 
mutual agreement between shopper and retailer, and so that I can fulfill the order and charge the 
shopper for it. 

6. Cancel order & line items: As a client, I need to be able to cancel an order that is not yet in fulfillment 
(no items shipped yet), so that shoppers can reverse their decision to make a purchase before it’s 
fulfilled. 

1. (Private Preview) Additionally, I need to be able to cancel a line item that is not yet in 
fulfillment from an order, so that shoppers can reverse their decision to make a purchase 
before it’s fulfilled.  

7. Update fulfillment status (Private Preview): As a client, I must be able to consume an event stream to 
which the fulfillment provider publishes fulfillment events, so that I can update the fulfillment state of 
the order and line items on the order. 

8. Search / list orders: Clients must be able to list/search for orders that meet specific criteria, so that 
they can list them for shoppers. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  3 

9. Get order by ID: Clients must be able to retrieve a specific order by ID, so that they can show that 
order to the shopper. 

10. Return Line item (Private Preview): As a client, I need to be able to initiate a return for a line item on 
an order. 

11. Refund Line item (Private Preview): As a client, I need to be able to initiate a refund for a line item on 
an order.  

 The Transact Catalog API is intended to provide product information necessary to be shown in a checkout 

page and to validate product existence during order orchestration. This service differs from a Product 

Information Management (PIM) tool that is used by retailers to add, update or delete product information. In 

order to add, delete or update the product information itself, the retailer will have to use their PIM/Catalog 

service directly (outside of Transact).  Succinctly, the Transact Catalog API does not provide catalog 

maintenance, but it does provide the means for shoppers to find and select products for ordering from the 

retailer’s catalog. 

The Transact Pricing API is intended to provide the functional pricing information viewable in the checkout 

page and to validate the accuracy of product prices used during order orchestration. Thr Pricing API will only 

provide the product base and sale price. It will be able to support line-item level strike through pricing. 

Retailers can also process tired pricing based on the way they setup their pricelist. Promotions & Loyalty lie 

outside of the Pricing API, but it will exist in  a separate capability. Transact allows retailers to have providers 

for each of these capabilities outside of the Pricing API. This also allows retailers the choice to maintain pricing 

separate from these capabilities. 

In the beta release, Transact will not support authentication, account creation, updating or deletion of 

shopper profiles. For these services, the retailer will need integrate directly with their shopper capability 

provider. Only providing shopper profile and address look-up through Transact would require additional effort 

for the retailer to integrate their shopper capability directly and through Transact. In order to have a single 

point of interaction with the shopper capability, Transact will keep shopper capability out of the scope during 

beta. From an ordering standpoint, (for checkout page and beyond), Transact assumes the retailer will provide 

all the information needed for an order (shopperID, shipping address and billing address). 

The Transact Tax API will calculate the applicable tax information to show to a shopper for both e-commerce 

and physical store orders. The Transact core ordering workflows will focus on tax calculations, but the tax 

calculations performed during ordering will also help drive retailer-owned shopper facing experiences tied to 

post purchase functions (e.g., receipts, order history, order details). These same tax calculations will be used 

to support retailer-owned tax reporting and remittance processes, in conjunction with 3P tax solution 

providers. Retailers are responsible for establishing contractual relationships with their 3P tax 

providers/partners, as part of the capability offerings in the Transact AWS marketplace. Retailers will need to 

utilize their 3P tax solution front-end capabilities to setup/register their accounts and continuously manage 

their tax data needs. 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  4 

API Actions 

The following Cart and Order actions and their primary data types are supported and described: 
 
Cart API 

• CreateCart  

• CreateCartLineItems  

• GetCart  

• UpdateCart  

• DeleteCart  

• ListCarts  

 
Order API 

• CreateOrder  

• CreateOrderLineItems  

• GetOrder  

• UpdateOrder  

• UpdateOrderFulfillments  

• UpdateOrderReturns X 

• UpdateSignedOrder X 

• DeleteOrder  

• ListOrders  

• SignOrder  

• CancelOrder X 

 
Catalog APIs 

• GetProduct  

• BatchGetProduct  

 
Pricing APIs 

• GetProductPrices  

• GeProductPricesForLineItems  

 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  5 

Tax API 

• GetTaxesForLineItems 

 
 
Data Types 

• Cart  

• Order  

• LineItem  

• Product  

• Pricing  

• Tax  

 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  6 

Cart APIs 

Note that carts may be created, managed, and stored using Transact via these Cart APIs, but retailers may 

choose to create, manage, and store carts outside of Transact as well. Transact.engineId will be obtained from 

the request URI to pass to Transact for all Cart APIs. There is internal caching to map from engineId to 

orderManagerId and contractDefinitionId, both of which are needed in Transact. 

CreateCart 

CreateCart calls the internal Transact API. This initiates order negotiation for the purpose of getting a list 

of constraint violations.  It returns a Cart object and its status. 

Request Syntax 
 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs: 
 
 Required 

o List of line item inputs, each minimally containing: 
 Product ID 
 Quantity 

 Unit 
 Amount 

 Optional:  
o Retailer ID 
o Store ID 

POST /carts 
Content-type: application/smithy 
 
@idempotent 
@http(code: 201, method: "POST", URI: "/carts") 
operation CreateCart { 
    input: CreateCartInput 
    output: CreateCartOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  7 

o Client ID 
o Shopper ID 
o Session ID 

 

Request Actions 

The request does not have a request body.   The Transact service performs the following actions: 

 Cart created in Transact, and is assigned a Cart ID unique to a Transact engine 
 Cart gets assigned Transact engine metadata specifying the Transact engine and Transact engine version 

info. 
 The “Add item(s) to cart” workflow gets triggered using the provided list of line items as input. See 

CreateCartLineItems. 

If the above actions are successful, cart creation date reflects when the API was called. 
 
 

Response Structure 
 

 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response.  The output is a newly created cart 
object with corresponding line item(s) and calculated (sub)totals. The following data is returned in smithy 
format by the Transact service. 
 
Cart 

The newly instantiated Cart object with corresponding line item(s) and calculated (sub)totals 

 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  

AccessDeniedException 
You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 

Status Code: 201 Created 
{ 
    cart: Cart 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  8 

Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  9 

CreateCartLineItems 

This service calls the internal Transact APIs. This API service is for creating/adding new line items to the 

instantiated cart.  It returns the updated Cart with added LineItem(s) and gets the status and details of 

CreateCartLineItems. 

Request Syntax 
 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs: 
 
 Required: 

o Cart ID 
o List of line item inputs, each minimally containing: 

 Product ID 
 Quantity 

 Unit 
 Amount 

 

Request Actions 

The request does not have a request body. The Transact service performs the following actions: 

 The “add line item” workflow is triggered 

POST /carts/{cartId}/lineItems 
Content-type: application/smithy 

 
{  
    lineItems: LineItem[] 
} 
@http(code: 201, method: "POST", URI: "/carts/{cartId}/line-items") 
operation CreateCartLineItems { 
    input: CreateCartLineItemsInput 
    output: CreateCartLineItemsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ConflictException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  10 

 Sample basic “add line item” workflow: 
o Transact confirms that the Cart ID exists. If not, returns an error 
o For each line item input in the list of line item inputs: 

 Transact calls Catalog provider to get details about the Product associated with the Product 
ID. 

 If product ID doesn’t exist or is not sellable, return an error.  
 If the product’s base unit does not match the unit specified by the client, return an error. 

 Unit 
 Amount 

 Add the following product information to the line item: 
 Product Name 
 Product Description 
 Product Thumbnail 
 Price 

 Unit 
 Currency 
 Amount 

 A new line item with a line item ID unique to the cart is created, with the product ID 
provided as input and the product information from the product provider included, and 
added to the list of line items in the cart. 

o The “last updated date” of the order is updated to the current time. 
o Transact calculates and updates the line item subtotal. 
o Transact calculates and updates the subtotals for cart based on the newly added line items. 

 

Response Structure 
Status Code: 201 Created 
{ 
    // refer to CreateCart response structure 
} 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. It returns the updated Cart object 
with new line items added. The following data is returned in smithy format by the Transact service. 
 
Cart 

The updated Cart object with instantiated LineItem(s). 

  

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

Status Code: 201 Created 
{ 
    cart: Cart 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  11 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  12 

GetCart 

This service calls the internal Transact API.  This API service is for reading / returning a Cart object and any 
associated line items for the instantiated cart.  It returns a Cart and gets the status and details of GetCart. 
 

Request Syntax 
 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs: 

 Required: 
o Cart ID 

 Optional: 
o Refresh cart flag 

 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Check if the cart ID provided exists. If not, return an error. 
 If the refresh cart flag is not provided: 

o Return the cart object with the ID provided 
o The “last updated date” of the order is updated to the current time. 

 If the refresh cart flag is provided: 
o The “refresh cart” workflow is triggered 
o Sample basic “refresh cart” workflow: 

GET /carts/{cartId} 
Content-type: application/smithy 

 
{  
    lineItems: LineItem[] 

} 
@readonly 
@http(code: 200, method: "GET", URI: "/carts/{cartId}") 
operation GetCart { 
    input: GetCartInput 
    output: GetCartOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  13 

 Check if the cart ID provided exists. If not, return an error. 
 For each line item, get product catalog data for its product ID and update the line item with 

the new data if there is any. 
 For each line item, get updated pricing data for its product ID and update the line item with 

the new price data if there is any. 
 The “last updated date” of the order is updated to the current time. 

o The subtotals for the cart are calculated based on the new line item data. 

Response Structure 
Status Code: 201 Created 
{ 
    // refer to CreateCart response structure 
} 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response.  The Transact service returns the 
updated Cart object with instantiated LineItem(s) in smithy format. 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400   

Status Code: 200 OK 
{ 
    cart: Cart 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  14 

UpdateCart 

This service calls the internal Transact API. A constraint violation is returned if the request contains a line item 

that is not already in the cart. For a Cart object, it gets the status and details of UpdateCart.  This API service 

should address the following requirements: 

 delete cart lineitem 

 edit lineitem quantity 

 edit cart metadata 

 label cart  

 validate cart 

Request Syntax 
 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 
Delete line item: 
 Required: 

o Cart ID 
o Line item ID 

Edit line item: 

PATCH /carts/{cartId} 
Content-type: application/smithy 

 
{  
    lineItems: LineItem[] 
} 
@idempotent 
@http(code: 200, method: "PATCH", URI: "/carts/{cartId}") 
operation UpdateCart { 
    input: UpdateCartInput 
    output: UpdateCartOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ConflictException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  15 

 Required: 
o Cart ID 
o Line item ID 
o New quantity 

 Unit 
 Amount 

Edit cart metadata: 
 Required: Cart ID 
 Optional: 

o Shopper ID 
o Session ID 
o Client ID 
o Merchant ID 
o Store ID 

 
Label cart: 
 Required:  

o Cart ID 
o Label key-value pair. 
o Add or Remove Flag 

Validate cart: 

 Required: Cart object (without Transact-generated cart ID, Transact engine metadata) 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 
Delete line item: 
 The “delete line item” workflow is triggered 
 Sample basic “delete line item” workflow: 

o Check if the cart ID provided and if the line item ID provided exist. If not, return an error. 
o If the line item provided is the only line item remaining, return an error, e.g., “use ‘delete cart 

service instead.” 
o The line item matching the line item ID provided as input is deleted from the cart ID specified 
o The “last updated date” of the order is updated to the current time. 
o The subtotals for the cart are calculated based on the deleted line item having been removed. 

 In future stages of development, the above workflow may be modified to include additional capabilities as 
they are made available via Transact and/or additional steps to reverse actions of the “add to cart” 
workflow, such as: 

o Removing inventory hold using Inventory provider. 

Edit line item: 
 The “edit line item quantity” workflow is triggered 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  16 

 Sample basic “edit line item quantity” workflow: 
o Check if the cart ID provided and if the line item ID provided exist. If not, return an error. 
o Check if the quantity unit matches that of the product. If not, return an error. 
o Set the quantity amount based on the amount specified by the client as input. 
o The “last updated date” of the order is updated to the current time. 
o The subtotals for the cart are calculated based on the deleted line item having been removed. 

 In future stages of development, the above workflow may be modified to include additional capabilities as 
they are made available via Transact and/or additional steps to reverse actions of the “add to cart” 
workflow, such as: 

o Update inventory hold using Inventory provider, to reflect the new quantity. 

Edit cart metadata: 
 Check if cart ID exists. If not, return an error. 
 Update metadata values with those specified in the input 
 The “last updated date” of the order is updated to the current time. 

Label cart: 
 Check if cart ID exists. If not, return an error. 
 If “add” flag: 

o Check if label key-value pair is already present on cart. If so, return an error. 
o Add key-value pair to the list of labels. 

 If “remove” flag: 
o Check if label key value pair is already present on cart. If NOT, return an error 
o The “last updated date” of the order is updated to the current time. 

Validate cart: 
 Check if all non-Transact generated but required fields are present. If not, return an error. 
 Check whether at least one line item is present. If not, return an error. 
 Check whether all line item IDs are unique. If not, return an error. 
 Check whether all units in line items match for quantity, and price. If not, return an error. 
 Check whether sum of line item costs match subtotal. If not, return an error. 
 Check whether sum of line item costs, taxes & fees, and discounts match the total. If not, return an error. 

Response Structure 
Status Code: 201 Created 
{ 
    // refer to CreateCart response structure 
} 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service. 
 

Status Code: 200 OK 
{ 
    cart: Cart 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  17 

Delete line item: 

 Cart object with specified line item deleted 
 
Edit line item: 

 Cart object with updated line item quantity. 
 
Edit cart metadata: 

 Cart object with updated metadata values. 
 
Label cart: 

 Cart object with updated labels list. 
 
Validate cart: 

 Return a success response if cart object is valid. 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  18 

DeleteCart 

DeleteCart calls the internal Transact API. This service discards (soft deletes) the Cart, meaning that it 

won’t show up in any of the Cart APIs, but would still exist in the underlying cart database in Transact. Note: 

Transact does not currently support programmatic hard deletes Request Syntax. 

Request Syntax 
 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 

 Required: 
o Cart ID 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 

 Check if cart ID exists. If not, return an error. 
 Mark cart ID for deletion, to be garbage collected by Transact. Retailer customer should stop being 

metered for storage of that cart object. 

Response Structure 
 

 

Status Code: 204 No Content 
{ 
    cart: Cart 
} 

DELETE /carts/{cartId} 
Content-type: application/smithy 
 
@idempotent 
@http(code: 204, method: "DELETE", URI: "/carts/{cartId}") 
operation DeleteCart { 
    input: DeleteCartInput 
    output: DeleteCartOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  19 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service{ Cart ID of deleted cart 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  

AccessDeniedException 
You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  20 

ListCarts 

ListCarts calls the internal Transact API. This service gets a list of Cart objects meeting certain search 

criteria. Additional work is needed to be able to filter by certain fields (shopperId and sessionId). See 

ListOrders for more details. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 

 Optional:  
o MaxResults (Integer) (see AWS API Standards for pagination) (default X; upper bound: Y) 
o Pagination identifier 

GET /carts 
    ?shopperId={shopperId} // optional 
    &sessionId={sessionId} // optional 
    &nextToken={nextToken} // optional, for pagination 
    &maxResults={maxResults} // optional, for pagination 
    /* Additional filters Transact needs to support later. 
        - brandId 
        - storeId 
        - clientId 
        - afterCreatedDate 
        - beforeCreatedDate 
        - afterLastUpdatedDate 
        - beforeLastUpdatedDate 
    */ 

Content-type: application/smithy 
 
@readonly 
@idempotent 
@http(code: 200, method: "GET", URI: "/carts") 
operation ListCarts { 
    input: ListCartsInput 
    output: ListCartsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ThrottlingException 
        InternalServerException 
    ] 
} 

https://w.amazon.com/bin/view/AWS/API_Standards/Pagination/#MaxResults


AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  21 

o Query Filters (each requires a “filter type”-“filter value” tuple) (one or more filters may be 
provided, with filters combining using an AND operator) 

 Shopper ID 
 Session ID 
 Beyond Private Beta: 

 Brand ID 
 Store ID 
 Client ID 
 Label String 
 Created datetime range 
 Last Updated datetime range 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 If the “MaxResults” input is specified, the maximum number of records to return should be that number. 

o If this input exceeds the upper bound that Transact can return at any one time, return an error. 
 If the total number of records for a query exceeds the number of records to return, return the first set of 

records, and a pagination identifier which allows the client to get the next set of matching cart IDs for that 
query. 

 Returned carts should be sorted in descending order by cart creation datetime (most recently created 
carts first). 

 If the pagination identifier is included as an input, return the next set of records from the query which 
provided that pagination identifier. 

o If the pagination identifier is not recognized, return an error. 
o If other filters are specified in addition to the pagination identifier, return an error. 

 If no query filters are specified return all carts being stored by a given Transact engine 
 If multiple query filters are specified, they should be combined in the query using an “AND” operator. 
 If shopper ID filter is specified, narrow the results to include only carts associated with that shopper ID. 
 If session ID filter is specified, narrow the results to include only carts associated with that session ID. 
 If “creation” / “last-updated” datetime filter is specified, narrow the results to only include carts which 

have a timestamp for the corresponding field within that time range. 
 If the label filter is specified, narrow the results to only return carts that include the query string in the list 

of label strings. 
 If “brand ID” / “store ID” / “client ID” filter is specified, narrow the results to only return orders that have 

the specified filter value for the corresponding field. 

Response Structure 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service. 

 List of cart IDs 

Status Code: 200 OK 
{ 
    carts: String{} // list of cartIds 
     nextToken: String 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  22 

 Pagination identifier (if applicable) 

Errors 

For information about the errors that are common to all actions, see Common Errors.  

AccessDeniedException 
You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  23 

Order APIs 

The Transact.engineId will be obtained from the request URI to pass into Transact  for all Order APIs. There is 

caching to map from the transact engine id to the orderManagerId and contractDefinitionId, both of which 

are needed to call the internal Transact APIs. 

CreateOrder 

This API service calls the internal Transact API. This conducts order negotiation, enabling a shopper to create an 

Order so that a retailer and shopper can agree on the terms of a “sales contract” An order must have  at least 

one line item.  The number of line items in an order is not constrained by Transact, although chosen capability 

providers (e.g., promotions, order fulfillment, taxes, etc.) may be limited in the number of line items or units 

they can support.. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 Required: 

o If retailer is using Transact to create, manage, and store carts: 
 Transact cart ID 

POST /orders 
Content type: application/smithy 
 
{  
 order: Order 
    constraintViolations: ConstraintViolation[] 
    lineItems: LineItem[] 

} 
 
@idempotent 
@http(code: 201, method: "POST", URI: "/orders") 
operation CreateOrder { 
    input: CreateOrderInput 
    output: CreateOrderOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  24 

o If retailer is NOT using Transact to create, manage, and store carts (i.e. they are managing carts 
outside of Transact): 

 Transact-compatible cart object 
 Shopper ID (if not already included in the cart object, otherwise optional). 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Transact creates an order, which is assigned an order ID unique to the Transact engine. 
 If Transact cart ID is provided as input, Transact checks whether cart ID exists. If cart ID does not exist, 

return an error. If it exists, record the Transact cart ID in the order. 
 If a cart object is provided as input, Transact validates that it is in the Transact-compatible schema. If cart 

object is not a Transact-compatible object, return an error. 
 Check if cart input contains at least one valid line item. If not, return an error. 
 Check if shopper ID is provided as input OR cart input contains a shopper ID. If both are false, return an 

error.  
 Add available cart data to the order (i.e., line items, shopper ID, payment info, fulfillment info, as 

available). 
 If shopper ID is provided as input, Transact adds or updates order’s shopper ID. 
 Transact adds the Transact engine metadata to the order. 
 Transact internally triggers a Negotiate order workflow.  

 

Response Structure 
 
 
 
 
 
 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service: Order document, either “Created” or “Negotiated”, depending on 
result of the negotiate order workflow. 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

Status Code: 201 Created 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  25 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  26 

CreateOrderLineItems 

Calls the internal Transact APIs. This API service is for creating/adding new line items to an instantiated Order. 

It gets the status and details of a CreateOrderLineItem object. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 Required: 

o If retailer is using Transact to create, manage, and store carts: 
 Transact cart ID 
 Order ID 

o If retailer is NOT using Transact to create, manage, and store carts (i.e. they are managing carts 
outside of Transact): 

 Transact-compatible cart object 
 Shopper ID (if not already included in the cart object, otherwise optional). 

o List of line item inputs, each minimally containing: 
 Product ID 
 Quantity 

 Unit 
 Currency 

POST /orders 
Content-type: application/smithy 
 
{  
    order: Order 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 

} 
 
@http(code: 201, method: "POST", URI: "/orders/{orderId}/line-items") 
operation CreateOrderLineItems { 
    input: CreateOrderLineItemsInput 
    output: CreateOrderLineItemsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  27 

 Amount 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 

 The “add line item” workflow is triggered 
 Sample basic “add line item” workflow: 

o Transact confirms that the Order ID exists. If not, returns an error 
o For each line item input in the list of line item inputs: 

 Transact calls Catalog provider to get details about the Product associated with the Product 
ID. 

 If product ID doesn’t exist or is not sellable, return an error.  
 If the product’s base unit does not match the unit specified by the client, return an error. 

 Unit 
 Amount 

 Add the following product information to the line item: 
 Product Name 
 Product Description 
 Product Thumbnail 
 Price 

 Unit 
 Currency 
 Amount 

 A new line item with a line item ID unique to the order is created, with the product ID 
provided as input and the product information from the product provider included, and 
added to the list of line items in the order. 

o The “last updated date” of the order is updated to the current time. 
o Transact calculates and updates the line item subtotal. 
o Transact calculates and updates the subtotals for the order based on the newly added line items. 

Response Syntax 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the service: Order object with added line items 
 
 

Status Code: 201 Created 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 

} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  28 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  29 

GetOrder 

This service calls the internal Transact API. This API is for reading / returning an Order object and its 

associated line items.  It gets the status and details of GetOrder. 

Request Syntax 
 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 

 Required: 
o Order ID 
o Cart ID 

 Optional: 
o Refresh cart flag 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Check if the order ID provided exists. If not, return an error. 
 Check if the cart ID provided exists. If not, return an error. 
 If the refresh cart flag is not provided: 

o Return the cart object with the ID provided 
o The “last updated date” of the order is updated to the current time. 

GET /orders/{orderId} 
Content-type: application/smithy 

 
{  
    lineItems: LineItem[] 
} 
@readonly 
@http(code: 200, method: "GET", URI: "/orders/{orderId}") 
operation GetOrder { 
    input: GetOrderInput 
    output: GetOrderOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 
\ 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  30 

 If the refresh cart flag is provided: 
o The “refresh cart” workflow is triggered 
o Sample basic “refresh cart” workflow: 

 Check if the cart ID provided exists. If not, return an error. 
 For each line item, get product catalog data for its product ID and update the line item with 

the new data if there is any. 
 For each line item, get updated pricing data for its product ID and update the line item with 

the new price data if there is any. 
 The “last updated date” of the order is updated to the current time. 

o The subtotals for the order and the cart are calculated based on the new line item data. 

Response Structure 
Status Code: 201 Created 
{ 
    // refer to CreateCart response structure 
} 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The Transact service returns the 
updated Order object with instantiated LineItem(s) in smithy format. 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400   

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  31 

UpdateOrder 

Calls the internal Transact API. This API service attempts Order renegotiation by allowing a shopper to specify 

fulfillment and payments and to make other changes in the order. A constraint violation is returned if the 

request contains a line item that is not already in the order. It gets the status and details of the UpdateOrder 

object. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 Required: 

o Transact order ID 
 Optional: 

o Update line item quantity 
 Line item ID (required) 
 Quantity (required) 

o Add / update line item fulfillment options 
 Line item ID (required) 
 Fulfillment Option (required) 

o Remove line item 

PATCH /orders/{orderId} 
Content-type: application/smithy 
 
{  
    order: Order 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 
} 
 
@idempotent 
@http(code: 200, method: "PATCH", URI: "/orders/{orderId}/line-items") 
operation UpdateOrder { 
    input: UpdateOrderInput 
    output: UpdateOrderOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  32 

 Line item ID (required) 
o Add / update recipient information 

 Line item ID (required) 
 Recipient information (required) 

o Add / update payment method 
 Payment card identifier (required) 

o Add / update shopper ID 
 Shopper ID 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Check whether Transact order ID exists, if not, return an error. 
 Update cart according to inputs. 

o Update line item quantity 
 Check if line item ID exists. If not, return an error. 
 Check if quantity unit and amount is allowed by the product. If not, return an error. 
 Update line item to specified quantity. 

o Add / update line item fulfillment options 
 Check if line item ID exists. If not, return an error. 
 Confirm that fulfillment option is valid. If not, return an error. 
 Update line item to specified fulfillment option. 

o Remove line item 
 Check if line item ID exists. If not, return an error. 
 Remove line item from order. 

o Add / update line item recipient information 
 If recipient information already exists, replace existing recipient information with supplied 

recipient information. 
 Else: Add supplied recipient information to order.  

o Add / update payment method 
 If payment method already exists, replace existing payment method with supplied payment 

method. 
 Else: Add payment method to order. 

o Trigger negotiate order workflow. 

Response Syntax 
 

 

 

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  33 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service. 
 Order updated with new data from input, and depending on the outcome of the negotiate order 

workflow: 
o in “negotiated” state 
o in “created” state, with list of errors that must be resolved by the client. 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  34 

UpdateOrderFulfillments 

UpdateOrderFulfillments calls the internal Transact API. This updates the Order fulfillment statuses. This 
service is intended to be called by fulfillment providers once their asynchronous fulfillment process is 
complete for updating fulfillment statuses in the order document. This service should be able to take care of 
updating fulfillment status for particular line item(s) as well. This encompasses the following process: 
 Events in the event stream should be published by the Fulfillment Provider when it changes the fulfillment 

state of a line item that was sent to the provider for fulfillment by Transact. The event should include, at a 
minimum, the Order ID and Line Item ID for the line item whose state has been updated by the Fulfillment 
Provider, and the new fulfillment state of that line item. 

 Transact should monitor the event stream and update the state of the corresponding line item to reflect 
the latest update from the Fulfillment provider.  

 Fulfillment states should be determined by the Fulfillment capability spec: 
o Currently assuming: Picked → Packed → Shipped → Out for Delivery → Delivered 

 If an order has at least one item whose state has been updated to “Shipped” by the provider, the state of 
the order should be updated to “In Fulfillment”.  

 If all of an order’s line items have been updated to “Delivered”, update the state of the order to 
“Complete”. 

 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

PUT /orders/{orderId}/fulfillments 
Content-type: application/smithy 
{  
    order: Order 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 
} 
 
@idempotent 
@http(code: 200, method: "PUT", URI: "/orders/{orderId}/fulfillments") 
operation UpdateOrderFulfillments { 
    input: UpdateOrderFulfillmentsInput 
    output: UpdateOrderFulfillmentsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  35 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 Required: 

o Transact order ID 
o Shopper ID 
o Line item ID 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Trigger Negotiate Order workflow. 
 Sample default Negotiate Order workflow: 

o Check whether Transact order ID exists, if not, return an error. 
o Confirm shopper ID is present in the order. If not, return an error. 
o Confirm order has at least one line item. If not, return an error and mark order for deletion. 
o Confirm order has shipping address if fulfillment options for any line item are “shipment” / 

“delivery”. 
o If payment card identifier is not specified, return an error. 
o For each line item: 

 Confirm product ID exists and is sellable in Catalog provider. If not, return an error. 
 Update line item product data with latest data for product ID from Catalog Provider. 
 Confirm line item quantity unit and amount type (int/float) matches expected unit and 

amount type for product ID. If not, return an error. 
 Get / update price for product ID from Pricing provider. 
 Confirm line item’s price unit matches expected unit and amount type for product ID. If not, 

return an error. 
 Get / update tax amount for product ID from Tax provider. 
 If fulfillment method is specified, confirm it is still valid for the line item with Fulfillment 

Provider. If not, return an error. 
 If fulfillment method is specified, get or update fulfillment charges for the line item with the 

Fulfillment provider. 
 If fulfillment method is specified, get or update fulfillment promise from the Fulfillment 

provider. 
 If fulfillment method is not specified, get available fulfillment options and add them to the 

line item for the client to consume. Return an error. 
 Calculate order subtotal. Sum of line item subtotals. 
 Calculate order fulfillment charges. Sum of line item fulfillment charges 
 Calculate order discounts. Sum of line item discounts. 
 Calculate order taxes and fees. Sum of line item taxes and fees. 
 Calculated order total. Sum of subtotal, fulfillment charges, discounts, and taxes and fees. 

o If no errors are found (all required data is present, valid, and up-to-date), set the order state to 
“Negotiated”. 

o If errors are found (required data missing, data invalid), set the order state to “Created” and collect 
all errors to be returned to client. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  36 

 In future stages of development, the above workflow may be modified to include additional capabilities as 
they are made available via Transact and/or additional steps such as: 

o Honoring price overrides if present. 
o Confirm shopper ID is present and in good standing in Shopper Identity provider. If not, return an 

error. 
o If payment card identified is specified, confirm that payment card identifier exists in Payment 

provider. If not, return an error. 
o Confirming inventory availability using Inventory provider. 
o Placing an inventory hold using Inventory provider 
o Associating order with held inventory using Inventory provider. 
o Passing order to Promotions provider to get promotional discounts. 
o Passing order to Fraud & Abuse provider to validate shopper and/or payment card identifier. 

Response Syntax 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the service. 
 
 Updated Order, depending on the outcome of the negotiate order workflow: 

o in “negotiated” state 
o in “created” state, with list of errors that must be resolved by the client. 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  37 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

 
  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  38 

UpdateOrderReturns 

UpdateOrderReturns calls the internal Transact API. This service updates the Order return statuses and calls 

the internal Transact API with targetAmendmentState set to SIGNED. This service should be able to take care 

of updating return status for particular line item(s) as well. This API should throw an exception for returning 

order units that are already in the process of being returned. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 
To be implemented in a later release. 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions:  
 
To be implemented in a later release. 

Response Syntax 
 

PUT /orders/{orderId}/returns 
{  
    order: Order 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 

} 
Content-type: application/smithy 
 
@idempotent 
@http(code: 200, method: "PUT", URI: "/orders/{orderId}/returns") 
operation UpdateOrderReturns { 
    input: UpdateOrderReturnsInput 
    output: UpdateOrderReturnsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 

} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  39 

Response Elements 

 
 
If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the service. 
 
To be implemented in a later release. 
 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

 
  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  40 

UpdateSignedOrder 

UpdateSignedOrder calls the internal Transact API. This service is for updating a post-signed Order to support 

use cases like item substitutions.  The intent is to have a separate API for this so that there can be separate 

permissions for this action.  The details are pending. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 
To be implemented in a later release. 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 
To be implemented in a later release. 

PATCH /orders/{orderId} 
Content-type: application/smithy 
 
{  
    order: Order 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 
} 
 
@idempotent 
@http(code: 200, method: "PATCH", URI: "/orders/{orderId}/line-items") 
operation CreateSignedOrderLineItems { 
    input: CreateSignedOrderLineItemsInput 
    output: CreateSignedOrderLineItemsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  41 

 
 

Response Syntax 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the service. 
 
To be implemented in a later release. 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400   

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 

} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  42 

DeleteOrder 

DeleteOrder calls the internal Transact API. This service discards (soft deletes) the Order, meaning that it 

won’t display in any of the Order APIs, but would still exist in the underlying Cart database in Transact. This 

service equally applies to negotiated or created orders.  Note: Transact does not currently support 

programmatic hard deletes. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 

 Required: Order ID 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Trigger “Discard order” workflow. 
 Sample default “Discard order” workflow: 

o Check if the order ID exists. If not, return an error. 
o Check if the order state is “Created” or “Negotiated”. If not, return an error. 
o Update order state to “marked for deletion” 

 In future stages of development, the above workflow may be modified to include additional capabilities as 
they are made available via Transact and/or additional steps such as: 

DELETE /orders/{orderId} 
Content-type: application/smithy 
 
{  
    order: Order 

} 
 
@idempotent 
@http(code: 204, method: "DELETE", URI: "/orders/{orderId}") 
operation DeleteOrder { 
    input: DeleteOrderInput 
    output:DeleteOrderOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ConflictException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  43 

o Release inventory holds for this order with the inventory provider. 

Response Syntax 
 

 

Response Elements 

If the action is successful, the service sends back an HTTP 204 response. The following data is returned in 
smithy format by the service: updated Order document of order that has been discarded (marked for 
deletion). 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ConflictException 
Updating or deleting a resource can cause an inconsistent state. 
HTTP Status Code: 409 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  

Status Code: 204 No Content 
{ 
    order: Order 

} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  44 

ListOrders 

ListOrders calls the internal Transact API. This service is intended to fetch and display Orders by specific search 

criteria.  The implementation of specific search keywords is still in development. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GET /orders 
Content-type: application/smithy 
 
    ?shopperId={shopperId} // optional 
    &nextToken={nextToken} // optional, for pagination 
    &maxResults={maxResults} // optional, for pagination 
    /* Additional filters that may be needed to support later. 
       Some (i.e. the date filters) require setting up an internal search engine.  
        - brandId 
        - storeId 
        - clientId 
        - associateId 
        - afterCreatedDate 
        - beforeCreatedDate 
        - afterLastUpdatedDate 
        - beforeLastUpdatedDate 
        - afterNegotiatedDate 
        - beforeNegotiatedDate 
        - afterSignedDate 
        - beforeSignedDate 
        - orderState 
        - paymentToken 
        - productId 
    */ 
 
@readonly 
@http(code: 200, method: "GET", URI: "/orders") 
operation ListOrders { 
    input: ListOrdersInput 
    output: ListOrdersOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  45 

URI Request Parameters 

The request uses the following URI parameters as inputs.  
 Required: 

o Shopper ID 
 Optional:  

o MaxResults (Integer) (see AWS API Standards for pagination) (default X; upper bound: Y) 
o Pagination identifier 
o Post Beta: Query Filters (each requires a “filter type”-“filter value” tuple) (one or more more filters 

may be provided, with filters combining using an AND operator) 
 Creation Datetime Range 
 Last updated Datetime Range 
 Negotiated Datetime Range 
 Signed Datetime Range 
 Order state 
 Payment card identifier 
 ProductID 
 Brand ID 
 Store ID 
 Client ID 
 Associate ID 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 If the “MaxResults” input is specified, the maximum number of records to return should be that number. 

o If this input exceeds the upper bound that Transact can return at any one time, return an error. 
 If the total number of records for a query exceeds the number of records to return, return the first set of 

records, and a pagination identifier which allows the client to get the next set of matching order IDs for 
that query. 

 Returned orders should be sorted in descending order by Order creation datetime (most recently created 
orders first). 

 If the pagination identifier is included as an input, return the next set of records from the query which 
provided that pagination identifier. 

o If the pagination identifier is not recognized, return an error. 
o If the pagination identifier does not correspond with the supplied shopper ID, return an error. 
o If other filters are specified in addition to the pagination identifier, return an error. 

 Narrow the results to include only orders associated with that shopper ID. 
 If no query filters are specified return all orders being stored by a given Transact engine 
 If multiple query filters are specified, they should be combined in the query using an “AND” operator. 
 If “creation” / “last-updated” / “negotiation” / “signed“ datetime filter is specified, narrow the results to 

only include orders which have a timestamp for the corresponding field within that time range. 
 If order state filter is specified, narrow the results to only return orders that currently match that order 

state. 
 If payment card identifier filter is specified, narrow the results to only return orders that have that 

payment card identifier as the payment method. 

https://w.amazon.com/bin/view/AWS/API_Standards/Pagination/#MaxResults


AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  46 

 If the product ID filter is specified, narrow the results to only return orders that have that product ID in at 
least one line item. 

 If “brand ID” / “store ID” / “client ID” / “Associate ID” filter is specified, narrow the results to only return 
orders that have the specified filter value for the corresponding field. 

Response Syntax 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following Order data is returned 
in smithy format by the service. 
 List of order IDs for the specified shopper ID. 
 Pagination identifier (if applicable) 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400   

Status Code: 200 OK 
{ 
    orders: String[] // list of orderIds 
    nextToken: String 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  47 

SignOrder 

This API service calls the internal Transact API. This service enables a shopper to be able to confirm, or “sign” 

an Order, allowing  a mutual agreement between shopper and retailer, and so fulfill the order and charge the 

shopper for it. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 

 Required: Order ID 

 Optional: Payment Transaction Reference ID 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Check if the current datetime is <= Negotiated Date + TTL duration. If not, return an error. 
 Trigger the Sign order workflow. 
 Sample default Sign order workflow:  

o Mark any line items whose fulfillment method is “take-with” as fulfilled. 
o If any line items are not “take-with”, send order to fulfillment provider. If successful, record 

fulfillment reference in the order. If unsuccessful, return an error. 

POST /orders/{orderId}/sign 
Content type: application/smithy 
{  
 order: Order 
    constraintViolations: ConstraintViolation[] 
    lineItems: LineItem[] 

} 
 
@idempotent 
@http(code: 200, method: "POST", URI: "/orders/{orderId}/sign") 
operation SignOrder { 
    input: SignOrderInput 
    output: SignOrderOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  48 

o Set order state to “Signed” 
o If there is a Transact Cart ID associated with the order, mark the cart for deletion. 

 In future stages of development, the above workflow may be modified to include additional capabilities as 
they are made available via Transact and/or additional steps such as: 

o Authorize payment card identifier for order total. If this fails, return an error. 

Response Structure 
 
 

 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service: “Signed” Order document. 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400  

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  49 

CancelOrder 

This API service calls the internal Transact API. This service cancels an Order before it is in fulfillment. This 

service should also handle cancelling particular line item(s). 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 

 Required: Order ID 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 Check if the order ID exists. If not, return an error. 
 Check if the order status is not “Signed”. 

o If “Created” or“Negotiated”, return an error (e.g., “order not yet Signed”). 
o If “In Fulfillment”, “Completed”, “Cancelled”, or “Reversed”, return an error (e.g., “order cannot be 

cancelled”) 
 Send cancellation request to Fulfillment Provider for order, including  all order line items. If provider 

rejects the request or is unavailable, throw an error. 
 If Fulfillment provider confirms cancellation, mark order and all order line items “cancelled” 

POST /orders/{orderId}/cancel 
Content type: application/smithy 
{ 
 order: Order 
    constraintViolations: ConstraintViolation[] 
    lineItems: LineItem[] 
} 
 
@idempotent 
@http(code: 200, method: "POST", URI: "/orders/{orderId}/cancel") 
operation CancelOrder { 
    input: CancelOrderInput 
    output: CancelOrderOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  50 

 

Response Structure 
 
 
 
 
 
 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service: updated Order in cancelled state with cancelled line items 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

 

 

 

 

Status Code: 200 OK 
{ 
    order: Order 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  51 

Catalog APIs 

The Transact Catalog APIs offer the services described below.  These services are focused on the Retailer 
Product ID (RPID), which is defined as the ProductId in the request/response. This is the unique ID created by 
a retailer to identify the Product and used to invoke information related to the product from other capabilities 
(SKU is a comparable attribute). It is the smallest granular level identifier in a catalog. Every RPID is a sellable 
item to a shopper. 
 

GetProduct 

GetProduct calls the internal Transact API. It returns a Product object and its status. This service is used to 

get the product information required for an order. This request can be invoked by the retailer client directly 
to get all the product info required for displaying the information in the discovery/product detail page and 
also by the Transact core during ordering to get the updated product information to add to the order 
document. 
 

Request Syntax 
 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs: 
 

 Required 
o retailerId (string) - unique Retailer 
o productid (string)- unique Catalog item 

 Optional 
o shopperlocale (locale) – localization information 
o catalogId (string) – unique identifier of specific catalog to search 

GET /products/{productId}" 
Content-type: application/smithy 
 
@readonly 
@http(code: 200, method: "GET", URI: "/products/{productId}") 
operation GetProduct { 
    input: GetProductInput 
    output: GetProductOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  52 

 

Request Actions 

The request does not have a request body.   The Transact service performs the following actions: 

1 The retailer client can directly invoke this service. Transact can also call this service during ordering to 
get the updated product information to add to the order document. This service is used to search the 
specified catalog and retrieve the product information required for an order.  

2 The retrieved product information is displayed in the discovery/product detail page. 
3 If the above actions are successful, a catalog item and its associated information is retrieved and ready 

to be selected and added to the shopper’s cart. 

Response Structure 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response.  The output is a retrieved Product 
object with corresponding catalog details. The following data is returned in smithy format by the Transact 
service. 
 

 Required 
o Productid (string) 
o productTaxCode (string) - maintained by the retailer’s Tax Vendor 
o unitOfMeasure  (string) – Unit Type for the product item 

 Optional 
o unitType (enum) – variable depending on the item and locale 
o catalogId (string) 
o productShippingInfo (structure) – fulfillment information and options 

 packageDimensionInfo (structure) 

 Length (structure) 
o Value (numeric) 
o Unit (string) 

 Width (structure) 
o Value (numeric) 
o Unit (string) 

 Height (structure) 
o Value (numeric) 
o Unit (string) 

 Weight (structure) 
o Value (numeric) 

Status Code: 200 OK 
{ 

    product: Product 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  53 

o Unit (string) 
 packageContentInfo (structure) 

 isLithiumBatteryIncluded (Boolean) 

 containsFoodOrBeverage (Boolean) 

 hasmatClass (string) 

 isFragile (Boolean) 
 isSignedShippingMethodRequired (Boolean) 

o ageRestriction (structure) 
 isAgeCheckRequired (Boolean) 
 minimumAge (numeric) 

o brand (string) – attribute of the product item 
o description (string) – attribute of the product item 
o variant – attribute of the product item 
o unitPrice (structure) – Amount 

 value (numeric) 
 currencyCode (string) 

o isPriceTaxInclusive (Boolean) – attribute of the product item 
o media (structure) 

 url (string) 
 mimeType (string) 
 label (string) 
 description (string) 

o status (enum) – attribute of the product item 
o attributes (structure) –  

 name (string) 
 value (string) 
 description (string) 

o lastUpdatedAt (datetime) – attribute of the product item 
 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

AccessDeniedException 
You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

InternalServerException 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  54 

Unexpected error during processing of request. 
HTTP Status Code: 500 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  55 

BatchGetProduct 

This service calls the internal Transact APIs. This API service is for retrieving mulitple Products with added 

information and it gets the status and details of the BatchGetProduct call. This service can be used to get the 

product information for multiple products in the same request. This will be exposed for the client to directly 

call the catalog service and by the Transact core to invoke as part of the various order and cart workflows. 

Request Syntax 
 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs: 
 

 Required 
o retailerId (string) - unique Retailer 
o productid (string)- unique Catalog item 

 Optional 
o shopperlocale (locale) – localization information 
o catalogId (string) – unique identifier of specific catalog to search 

 
 

Request Actions 

The request does not have a request body.   The Transact service performs the following actions: 

POST /products 
Content-type: application/smithy 
 
@readonly 
@http(code: 200, method: "POST", URI: "/products” 
operation BatchGetProduct { 
    input: BatchGetProductInput 
    output: BatchGetProductOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  56 

1 The retailer client can directly invoke this service. Transact can also call this service during ordering to get 
the updated product information to add to the order document. This service is used to search the 
specified catalog and retrieve all the product information required for multiple Products in an order  

2 Each retrieved product information set is displayed in the discovery/product detail page. 
3 If the above actions are successful, a set of catalog items and their associated information is retrieved and 

ready to be selected and added to the shopper’s cart. 

 

Response Structure 
Status Code: 201 Created 
{ 
    // refer to CreateCart response structure 
} 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response.  The output is a set of one or more 
retrieved Product objects with corresponding catalog details. The following data is returned in smithy format 
by the Transact service for each Product object. 
 

 Required 
o Productid (string) 
o title (string) - product description (label) for product 
o productTaxCode (string) - maintained by the retailer’s Tax Vendor 
o unitOfMeasure  (string) – Unit Type for the product item 

 Optional 
o unitType (enum) – variable depending on the item and locale 
o catalogId (string) 
o productShippingInfo (structure) – fulfillment information and options 

 packageDimensionInfo (structure) 

 Length (structure) 
o Value (numeric) 
o Unit (string) 

 Width (structure) 
o Value (numeric) 
o Unit (string) 

 Height (structure) 
o Value (numeric) 
o Unit (string) 

 Weight (structure) 
o Value (numeric) 
o Unit (string) 

 packageContentInfo (structure) 

 isLithiumBatteryIncluded (Boolean) 

Status Code: 200 OK 
{ 
    product: Products 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  57 

 containsFoodOrBeverage (Boolean) 

 hasmatClass (string) 

 isFragile (Boolean) 
 isSignedShippingMethodRequired (Boolean) 

o ageRestriction (structure) 
 isAgeCheckRequired (Boolean) 
 minimumAge (numeric) 

o brand (string) – attribute of the product item 
o description (string) – attribute of the product item 
o variant – attribute of the product item 
o unitPrice (structure) – Amount 

 value (numeric) 
 currencyCode (string) 

o isPriceTaxInclusive (Boolean) – attribute of the product item 
o media (structure) 

 url (string) 
 mimeType (string) 
 label (string) 
 description (string) 

o status (enum) – attribute of the product item 
o attributes (structure) –  

 name (string) 
 value (string) 
 description (string) 

o lastUpdatedAt (datetime) – attribute of the product item 
 
 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  58 

The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  59 

Pricing APIs 

The Pricing API provides the pricing information to show in the checkout page and validate if the accurate 

product price is used during order orchestration. This capability will only provide the product base and sale 

price. The current way the pricing capability is defined will be able to support line-item level strike through 

pricing. Retailers can even process tired pricing based on the way they setup their pricelist. Promotions and 

Loyalty are outside of the pricing capability but they will be a separate capability. Transact handles these 

capabilities outside of pricing capability, since retailers may want to maintain pricing separate from these 

capabilities. 

GetProductPrices 

This API service calls the internal Transact API. This conducts order negotiation, enabling a shopper to create an 

order so that a retailer and shopper can agree on the terms of a “sales contract” An order must have  at least 

one line item.  The number of line items in an order is not constrained by Transact, although chosen capability 

providers (e.g., promotions, order fulfillment, taxes, etc.) may be limited in the number of line items or units 

they can support. 

This request can be used to get the price of the product across different pricelists that are available. It returns 

all the pricelist and associated product prices in those pricelists. The retailer’s client can directly invoke this 

request to get the prices across different pricelists for the retailer to decide what they need to display to the 

shopper. 

Request Syntax 
 

 

 

 

 

 

 

 

 

Get /prices 
Content type: application/smithy 
 
{  
  Pricing: Pricing 
    constraintViolations: ConstraintViolation[] 
    lineItems: LineItem[] 
} 
 
@readonly 
@http(code: 200, method: "GET", URI: "/ prices") 
operation GetProductPrices { 
    input: GetProductPricesInput 
    output: GetProductPricesOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  60 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 

 Required 
o retailerId (string) – used to uniquely identify a retailer 
o productId (string) – the retailer product id (RPID) to identify the product and get its data 
o productIdList (structure) – a list of RPID strings 

 Optional 
o currencyCode (string) – represents the base currency to compute prices 
o shopperId (string) – uniquely identifies the retailer’s shopper 

 

Request Actions  

1 The retailer client can directly invoke this service. Transact can also call this service during ordering to get 
the updated product information to add to the order document. This service is used to search the 
specified pricelist(s) and retrieve the product prices for the products in an order  

2 The retrieved product price is displayed in the discovery/product detail page. 
3 If the above actions are successful, a product’s price and any associated information is retrieved and 

added to the discovery/product detail page for selection in the shopper’s cart.  The displayed price is used 
in calculating the cart’s subtotals and order totals for the shopper. 

 

Response Structure 
 
 
 
 
 
 
 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the Transact service: 
 

 Required 
o productPriceDetails (structure) – product Item with price details 

 productId (string) – the retailer product id (RPID) to identify the product and get its data 
 prices (structure) – price(s) from the retailer’s pricelist(s) 

 value (numeric) – price in the currency used for the item in the order 

Status Code: 200 OK 
{ 
    pricing: Pricing 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  61 

 unit (string) – currencyCode for the item in the order 
 priceListId (string) – unique identifier for the pricelist(s) used to obtain shopper’s prices 
 unitBasePrice (structure) – starting price of a product item 

 value (numeric) – price in the currency used for the item in the order 

 unit (string) – currencyCode for the item in the order 
 unitSalePrice (structure) – offered price of a product item to calculate actual cost 

 value (numeric) – price in the currency used for the item in the order 

 unit (string) – currencyCode for the item in the order 
 isPriceTaxInclusive (Boolean) - Defines if tax is included or excluded as part of the item 

price 

 Optional 
o catalogId (string) – identifies the catalog from which the price(s) were retrieved 
o priceListName (string) – the name of the pricelist 
o shopperId (string) – uniquely identifies the retailer’s shopper 

 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  62 

GetProductPricesForLineItems 

This service calls the internal Transact APIs. This API service is for creating/adding new Pricing to line item(s). 

It gets the status and details of a Pricing object. 

This API will be used during ordering by the Transact core to get the updated price for the lineitem product. 

When processing this request, Transact passes in the right pricelist from which the price information needs to 

be returned. 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 

 Required 
o retailerId (string) – used to uniquely identify a retailer 
o priceLineItemList (structure) - List of lineitems for which prices must be retrieved. 
o productId (string) – the retailer product id (RPID) to identify the product and get its data 
o productIdList (structure) – a list of RPID strings 

 Optional 
o currencyCode (string) – represents the base currency to compute prices 

POST /prices/lineItems 
Content-type: application/smithy 
 
{  
    pricing: Pricing 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 
} 
 
@http(code: 200, method: "POST", URI: "/ prices/lineItems") 
operation GetProductPricesForLineItems { 
    input: GetProductPricesForLineItemsInput 
    output: GetProductPricesForLineItemsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  63 

o quantity (structure) - Lineitem quantity within the cart. 
 value (numeric) – Amount of the given quantity unit 
 unitOfMeasure (string) - quantity unit type 

o catalogId (string) - - identifies the catalog from which the price(s) were retrieved 
o shopperId (string) – uniquely identifies the retailer’s shopper 

 
 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 

1 The retailer client can directly invoke this service. Transact can also call this service during ordering to get 
the updated pricing information to add to the order document. This service is used to search the specified 
pricelist(s) and retrieve the product prices for the lineitems in an order  

2 The retrieved product prices are displayed in the discovery/product details page. 
3 If the above actions are successful, the product lineitem prices and any associated information are 

retrieved and added to the discovery/product detail page for selection in the shopper’s cart.  The 
displayed prices are used in calculating the cart’s subtotals and order totals for the shopper. 

Response Syntax 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the service: Pricing object with added line items 
 

 Required 
o pricingLineItemsDetailsList (structure) – product lineItems list with price details 

 productId (string) – the retailer product id (RPID) to identify the product and get its data 
 prices (structure) – price(s) from the retailer’s pricelist(s) 

 value (numeric) – price in the currency used for the item in the order 

 unit (string) – currencyCode for the item in the order 
 priceListId (string) – unique identifier for the pricelist(s) used to obtain shopper’s prices 
 unitBasePrice (structure) – starting price of a product item 

 value (numeric) – price in the currency used for the item in the order 

 unit (string) – currencyCode for the item in the order 
 unitSalePrice (structure) – offered price of a product item to calculate actual cost 

 value (numeric) – price in the currency used for the item in the order 

 unit (string) – currencyCode for the item in the order 

Status Code: 200 OK 
{ 
    pricing: Pricing 
    constraintViolations: ConstraintViolation[] 

} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  64 

 isPriceTaxInclusive (Boolean) - Defines if tax is included or excluded as part of the item 
price 

 Optional 
o Quantity (string) - quantity of the item 
o totalBasePrice (structure) – Total price of all items without calculating discounts. This is the 

unitBasePrice multipled by the quantity. This field will only be populated if the quantity is passed in 
as part of the request. 

 value (numeric) – price in the currency used for the item in the order 

 unit (string) – currencyCode for the item in the order 
o catalogId (string) – identifies the catalog from which the price(s) were retrieved 
o priceListName (string) – the name of the pricelist 
o shopperId (string) – uniquely identifies the retailer’s shopper 

 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

 
  

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  65 

Tax API 

The Transact Tax capability calculates the applicable tax information to show to a shopper for both e-

commerce and physical store orders. Transact’s core ordering workflows focus on tax calculations, but the tax 

calculations performed during ordering also help drive retailer-owned shopper facing experiences tied to post 

purchase functions (e.g., receipts, order history, order details). 

Also, these same tax calculations are used to support retailer-owned tax reporting and remittance processes, 

in conjunction with the 3P tax solution providers. Retailers are responsible for establishing contractual 

relationships with the 3P tax providers/partners, as part of the capability offerings in the Transact AWS 

marketplace. Retailers utilize the 3P tax solution front-end capabilities to setup/register their accounts and 

continuously manage the tax data needs (‘back office’ activities) for running their respective businesses. There 

is a further intention to ‘commit’ transactions to each tax solution provider, in an effort to support retailer-

owned tax reporting/remittance processes. 

GetTaxesForLineItems 

This API service calls the internal Transact and is used for updating/adding new line item taxes to an 

instantiated Order, and adjusting the subtotals and total for an order with the applied taxes. This request 

covers the core needs for tax calculation, including tax breakdown details for each line item in a transaction. 

The response details received from this request, via the tax solution provider, will be persisted to the ordering 

document as part of the Core Transact ordering workflows.  

It gets the status and details of a GetTaxesForLineItems object. 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  66 

Request Syntax 
 

 

 

 

 

 

 

 

 

 

URI Request Parameters 

The request uses the following URI parameters as inputs. 
 

 Required 
o retailerId (string) – used to uniquely identify a retailer 
o timestamp (date/time) – when the tax calculation is done for the order 
o taxGroup (structure) -  all taxable lineitem elements in the order.  

 billingAddress (structure) 

 line1 – (optional) 

 line2 – (optional) 

 postalCode– (string) – Postal or Zip Code of the Address 

 city – (optional) 

 state – (optional) 

 country (CountryCode) – Country of the Address 
 shipFromAddress (structure)’ 

 line1 – (optional) 

 line2 – (optional) 

 postalCode– (string) – Postal or Zip Code of the Address 

 city – (optional) 

 state – (optional) 

POST /taxes/lineItems 
Content-type: application/smithy 
 
{  
    tax: Tax 
    constraintViolations: ConstraintViolation[] 
         lineItems: LineItem[] 

} 
 
@http(code: 200, method: "POST", URI: "/taxes/lineItems") 
operation GetTaxesForLineItems { 
    input: GetTaxesForLineItemsInput 
    output: GetTaxesForLineItemsOutput 
    errors: [ 
        ValidationException 
        AccessDeniedException 
        ResourceNotFoundException 
        ThrottlingException 
        InternalServerException 
    ] 
} 
 
 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  67 

 country (CountryCode) – Country of the Address 
 shipToAddress (Address structure) 

 line1 – (optional) 

 line2 – (optional) 

 postalCode– (string) – Postal or Zip Code of the Address 

 city – (optional) 

 state – (optional) 

 country (CountryCode) – Country of the Address 
 LineItem (structure) – Taxable Line Items 

 lineItemID (string) Unique identifier of line item needing tax calculation 

 lineitemType (enum) Category of line item needing tax calculation 
o PRODUCT  
o SHIPPING  
o ,SERVICE   

 quantity (optional Quantity) – Quantity of the line item 
o unitOfMeasure (Unit of Measure) - quantity unit type 
o value (numeric) - amount of the given quantity unit 

 unitSalePrice (optional Amount) - Price per unit after promotions 
o value (string) - Amount of the given currency 
o unit (CurrencyCode) - Currency code 

 aggregatePrice (Amount) - Price of line item after promotions applied 
o value (string) - Amount of the given currency 
o unit (CurrencyCode) - Currency code 

 isPriceTaxInclusive (Boolean) - Is tax included or excluded in item price 

 productTaxCode (string) - Retailer-specific Product Tax Code (PTC) 

 productTitle (optional string) - Product Title 

 Optional 
o shopperLocale (Locale) - - Data used for localizing response strings. 
o shopperId (string) – uniquely identifies the retailer’s shopper 

 

Request Actions  

The request does not have a request body. The Transact service performs the following actions: 
 

1 The retailer client can directly invoke this service. Transact can also call this service during ordering to 
get the updated tax information to add to the order document. This service is used to search the 
specified order line item(s), retrieve the retailer’s tax service rates and calculate the tax amounts. 

2 The retrieved line items taxes are displayed in the discovery/product details page. 
3 If the above actions are successful, the order subtotal(s) and total amounts are recalculated and the 

entire order is updated accordingly in the discovery/product detail pages for the shopper. 
4 When the order is placed, there may be an additional call to the retailer’s tax service to report the 

transaction’s tax data as required by the taxing authority’s jurisdiction. 

 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  68 

Response Syntax 
 

 

 

Response Elements 

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in 
smithy format by the service: Tax object with updated line items. 

 

 Required 
o overallTaxAmount (Amount) - Total tax amount payable as part of the order 

 value (string) – Tax Amount of the given currency 
 unit (CurrencyCode) - Currency code 

o detailedTaxLineItems (DetailedTaxLineItemsList structure) – Line items list with their individual tax 
details 
 lineItemID (LineItem string) - Unique line item identifier requiring a tax calculation 
 appliedTaxRate (numeric decimal) - Effective tax rate applied to the line item 
 lineItemTaxableAmount (Amount) - Taxable amount for tax calculation 

 value (string) – Tax Amount of the given currency 

 unit (CurrencyCode) - Currency code 
 lineItemTaxAmount (Amount) - Total tax payable for the line item 

 value (string) – Tax Amount of the given currency 

 unit (CurrencyCode) - Currency code 
 taxInfo (taxInfoList structure) - Tax information for the current line item 

 amountForType (Amount) - Tax amount for the current tax type 
o value (string) – Tax Amount of the given currency 
o unit (CurrencyCode) - Currency code 

 rateForType (numeric decimal) - Tax rate for the current tax type 

 name (string) – Name of the applied tax 

 classification (string) – Tax or Fee classification 

 subclassification (string) – Subclassification providing detailed tax type information 

 origin (enu) - Source of the tax, corresponding to input Location type 
o ORIGIN 
o  DESTINATION 

 jurisdictionName (string) - Name of the jurisdiction 

 jurisdictionType (string) - Jurisdiction type, e.g., city, state, special district 

 jurisdictionLocation (Address structure) – Jurisdiction Location information 
o line1 – (optional) 
o line2 – (optional) 
o postalCode– (string) – Postal or Zip Code of the Address 

Status Code: 200 OK 
{ 
    tax: Tax 
    constraintViolations: ConstraintViolation[] 
} 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  69 

o city – (optional) 
o state – (optional) 
o country (CountryCode) – Country of the Address 

 

Errors 

For information about the errors that are common to all actions, see Common Errors.  
 
AccessDeniedException 

You do not have the required privileges to perform this action. 
HTTP Status Code: 403 

InternalServerException 
Unexpected error during processing of request. 
HTTP Status Code: 500 

ResourceNotFoundException 
Request references a resource which does not exist. 
HTTP Status Code: 404 

ThrottlingException 
Request was denied due to request throttling. 
HTTP Status Code: 429 

ValidationException 
The input does not satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 

 
 

 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  70 

Data Types 

The AWS Transact Gateway Service  API contains essential data types that various actions use. This section 

describes each data type in detail. 

 

The following data types are supported: 

Cart Data Type 

A representation of the items a shopper is considering for purchase. A cart also contains sales context, e.g., 
date/time, order capture channel, shopper identity (when identified), and store location. At a minimum, a 
Transact cart contains a Transact-generated Cart ID, Transact engine metadata, datetimes for the cart’s 
creation and last update, and at least one line item. Multiple order negotiations can be initiated from a single 
cart. 
 
Transact is designed to support cart creation, management and storage, but if required, retailer developers 
may choose to create, manage, and store carts outside of Transact in the future and pass cart objects into 
Transact for use in order orchestration. Cart is the primary object used to capture and contain a retail 
customer’s intended order. 
 

Properties 

Cart Property Type Category Required? Comments 

CartId String Metadata Required Transact-generated ID. Must be unique at the Transact 
Engine leve., Does not need to be shopper-facing. 

EngineId String Metadata Required Transact generated to specify the Transact engine ID 
and the Transact engine version ID (if applicable). 

CreationDateTime Datetime Metadata Required Transact generated at cart creation. 

UpdateDateTime Datetime Metadata Required Transact generated at last cart update activity. 

Labels String Metadata Optional List of strings that may be provided or updated by a 
client. Stored in Transact, but not used by Transact. 
e.g., “Active”, “Archived”, “Cart”, “Wishlist”, “John’s 
Cart”, “Grocery”, etc. 

BrandId String Client Info Optional Client-provided ID specifying the brand associated with 
the cart. May be used to distinguish between multiple 
retailer brands that may share a Transact engine (e.g., 
a customer might have two Brand IDs, e.g. “Saks 5th 
Avenue”, “Saks Off 5th”, for two different brands that 
may use a single Transact engine.) 

StoreId String Client Info Optional Client-provided ID specifying the store associated with 
the cart. May be used to identify a specific physical 

Note 

The order of each element in a data type structure is not guaranteed. Applications should  

not assume a particular order. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  71 

Cart Property Type Category Required? Comments 

store location “store-XYZ”, or to distinguish variations 
across stores, such as prices for different store 
locations or online vs offline. 

ClientId String Client Info Optional Client-provided ID specifying the shopper-facing client 
application creating the cart. May be used to identify a 
specific application, e.g., “Website” vs “iOS App” vs 
“Android App”, or potentially even the specific in-store 
POS client device ID. 

ShopperId String Shopper Info Optional Client-provided ID specifying the shopper associated 
with the cart. May be checked against Shopper Identity 
provider if workflows are configured to include that 
check. 

SessionId String Shopper Info Optional Client-provided ID specifying the session associated 
with the cart. May be used to associate carts with 
browsing sessions for logged-out shoppers. 

Location String Shopper Info Optional Client-provided DEFAULT address or postal code used 
to estimate values for taxes & fees, available 
fulfillment options and charges, etc. 

LiteItem String Product Info Yes Each cart must have at least one line item. 

Subtotal Currency 
(decmal) 

Calculation Info Required Transact-generated sum of the costs of the line items 
in the cart, not including taxes, fees or discounts. 

Discounts Currency 
(decmal) 

Calculation Info Optional Transact-generated sum of the discounts associated 
with the line items in the cart. 

Fulfillment Charges Currency 
(decmal) 

Calculation Info Optional Transact generated sum of the costs of fulfillment 
charges (e.g., shipping fees). 

Tax Currency 
(decmal) 

Calculation Info Optional Transact generated sum of the taxes and fees 
associated of the line items in the cart, including 
fulfillment charges. 

Total Currency 
(decmal) 

Calculation Info Optional Transact generated sum of the costs of the line items 
in the cart, including discounts, taxes, and fees. 

Payment card 
identifier 

String Payment Info Optional Client-provided non-PCI token ID that maps to a 
payment method stored in a Payment provider. 

Payment last-4 String Payment Info Optional Client-provided or provider-supplied. Type of cart & 
last 4 digits of a card-based payment instrument, for 
displaying on receipts (e.g. VISA-1234, or AMEX-6789 

 

ShopperId 

The AWS Transact Service Model unique shopper identifier to associate the shopper placing the order with 

a cart. 

@httpQuery("shopperId") 

$shopperId 

Type: String 
Length Constraints: Fixed length of 36. 
@pattern("^[A-Za-z0-9_-]+$") 
string ShopperId 

Required: Yes’ 
 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  72 

fulfillerAddress 
Address the line item(s) need to be shipped to. 

$fulfillerAddress 

fulfillerAddress: Address 

`    structure Address  {} 

Required: Yes’ 
lineItems 

structure LineItem { 
    id: String 
} 
list LineItemList { 
    member: LineItem 
} 
lineItems: LineItemList 

Required: Yes’ 
 s3uri 

The S3 URI from which the API service is invoked. 
Type: String 
Length Constraints: Minimum length of 10. 
Pattern: [sS]3://[a-z0-9][a-z0-9.-]{1,61}[a-z0-9]/.+ 
 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  73 

Order Data Type 

A representation of the items a shopper intends to purchase, the terms associated with how the shopper 
intends to purchase them, and the details of a retailer’s offer to sell the requested items to the shopper 
according to the terms the shopper has requested (“sales contract”). Like a cart, an order also contains sales 
context, e.g., date/time, order capture channel, shopper identity (when identified), and store location. 
 
Order is the object used to process a Cart’s contents into a customer order for a completed transaction. 
Orders must be created, managed, and stored in Transact. 
 
Order Workflow 
A Transact Order has a specific workflow associated with it, signified by the Order Status.  This status is 
Transact-generated, based on client requests and completion of order workflow steps. Possible status values 
are:  
 Created — The order was successfully created, but is not ready to be signed by the client, e.g., if 

Transact’s latest attempt to obtain and validate all necessary information was unsuccessful. 
 Negotiated — The order is ready to be signed by the client. Transact succeeded its latest attempt to 

validate and obtain all necessary information for an order to be signed. 
 Marked for Deletion — The order was discarded by the client or by Transact as it became stale. 
 Signed — A negotiated order was successfully signed by the client, and will be or has been handed off for 

fulfillment. Contents of the order are now locked, except for changes in line-item state, order state, and 
amendments. 

 In Fulfillment — At least one line item from a Signed order has begun fulfillment. 
 Cancelled — All line items in the order have been cancelled prior to having been fulfilled. 
 Complete — All non-cancelled line items in the order have been fulfilled successfully. 
 Reversed — All non-cancelled line items in the order have been Returned or Refunded. 
 

 

Properties 

Order Property Type Category Required? Comments 

OrderId String Metadata Required The Transact-generated ID must be unique at the 
Transact Engine level, but may be more unique (e.g., 
unique to retailer customer or globally unique). This 
may be shopper-facing. 

CartId String Metadata Optional Transact-generated ID of the Transact cart from 

which this order was created. 

EngineId String Metadata Required Transact generated to specify the Transact engine ID 
and the Transact engine version ID (if applicable). 

CreationDateTime Datetime Metadata Required Transact generated at cart creation. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  74 

Order Property Type Category Required? Comments 

UpdateDateTime Datetime Metadata Required Transact generated at last cart update activity. 

NegotiatedDateTime Datetime Metadata Optional Transact-generated, based on the datetime that the 
order was last successfully negotiated. 

SignedDateTime Datetime Metadata Optional Transact-generated, based on the datetime that a 
“Negotiated” order was signed by the client to 
became a “Signed” order. 

Time-to-Live Datetime Metadata Required Transact-generated, based on the Order TTL 
configuration for the Transact engine. Stipulates the 
amount of time from the “Negotiated datetime” 
within which a “Negotiated” order can be "Signed" 
by a client. 

OrderStatus String Metadata Optional Transact-generated, based on client requests and 
completion of order workflow steps. Possible values 
are:  “Created”, “Negotiated”, “Signed”, “Marked 
For Deletion”, :’Cancele’:, “In-Fulfillment”, 
“Canceled”, and “Reversed.”. 

BrandId String Client Info Optional Client-provided ID specifying the brand associated 
with the order. May not be relevant for all retailers, 
but will be used to distinguish between multiple 
retailer brands that may share a Transact engine 
(e.g., a customer like Saks Cloud Services might have 
two brand IDs, e.g. “Saks 5th Avenue”, “Saks Off 
5th”, representing two different brands that may 
use a single Transact engine.)  

StoreId String Client Info Optional Client-provided ID specifying the store associated 
with the order. May be used to identify something 
like “Webstore” a specific physical store location 
“store-XYZ”. 

ClientId String Client Info Optional Client-provided ID specifying the shopper-facing 
client application creating the order. May be used to 
identify a specific application, e.g., “Website” vs 
“iOS App” vs “Android App”, or potentially even the 
specific in-store POS client device ID. 

Associate ID String Client Info Optional Client-provided ID specifying the associate that was 
responsible for a transaction (e.g., for an in-store 
transaction). 

ShopperId String Shopper Info Required Client-provided ID specifying the shopper associated 
with the order. May be checked against Shopper 
Identity provider if workflows are configured to 
include that check. Guest customer orders also 
require a shopper ID to complete checkout. 

LineItem String Product Info Optional Each order must have at least one line item. See 
Line Item Object for the schema. 

Promotional Claim Code String Discount Info Optional Not relevant until after Private Preview. Client-
provided promotional claim code to be evaluated by 
the Promotions provider (i.e., Coupon-code or 
Discount-code) to determine applicability of certain 
promotions. 

Payment card identifier String Payment Info Optional Client-provided non-PCI token ID that maps to a 
payment method stored in a Payment provider. 
Required for successful negotiation and signing. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  75 

Order Property Type Category Required? Comments 

Payment transaction 
reference ID 

String Payment Info Optional Client-provided or provider-supplied record of the 
payment transaction for an order whose payment 
has been authorized. 

Payment last-4 String Payment Info Optional Client-provided or provider-supplied. Last 4 digits of 
a card-based payment instrument, for displaying on 
receipts. 

Subtotal Currency 
(decmal) 

Calculation Info Required Transact-generated sum of the costs of the line 
items in the order, not including taxes, fees or 
discounts. 

Discounts Currency 
(decmal) 

Calculation Info Optional Transact-generated sum of the discounts associated 
with the line items in the cart. 

Fulfillment Charges Currency 
(decmal) 

Calculation Info Optional Transact generated sum of the costs of fulfillment 
charges (e.g., shipping fees). 

Tax Currency 
(decmal) 

Calculation Info Optional Transact generated sum of the taxes and fees 
associated of the line items in the cart, including 
fulfillment charges. 

Total Currency 
(decmal) 

Calculation Info Optional Transact generated sum of the costs of the line 
items in the order, including discounts, taxes, and 
fees. 

 

orderId 
   orderId: String 
       Required: Yes  
lineItems 

structure LineItem { 
    id: String 
} 
list LineItemList { 
    member: LineItem 
} 
lineItems: LineItemList 

Required: Yes  
shopperId 

@httpQuery("shopperId") 

$shopperId 

Type: String 
Length Constraints: Fixed length of 36. 
@pattern("^[A-Za-z0-9_-]+$") 
string ShopperId 

Required: Yes’ 
fulfillerAddress 

Address the line item needs to be shipped to. 

$fulfillerAddress 

fulfillerAddress: Address 

   ` structure Address  {} 
payments 
    $payments 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  76 

  payments: PaymentList 
  list PaymentList { 
     member: Payment 
  } 

recipients 
    $recipients 
    recipients: RecipientList 
  list RecipientList { 
      member: Recipient 
  } 

discountApplications 
    $discountApplications 
    discountApplications: DiscountApplicationList 
  list DiscountApplicationList { 
      member: DiscountApplication 
  } 

fulfillmentOptionSelection 
    @notProperty 
    fulfillmentOptionSelection: FulfillmentOptionSelection 
  list FulfillmentOptionSelectionList { 
      member: FulfillmentOptionSelection 
  } 
buyingApplication 
    @property(name: "buyingApplicationInput") 
    buyingApplication: BuyingApplicationInput 
    $fulfillmentOptionSelections 
    $buyingApplication 

 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  77 

LineItem Data Type 

A representation of an item that a shopper is considering purchasing or intends to purchase contained within 
carts and orders. This representation minimally includes an identifier of the product itself, the units and 
quantities that the shopper intends to purchase, and may include additional information as carts and orders 
evolve over the course of the shopping journey, including item details, prices, promotional discounts, taxes, 
fulfillment options, destination addresses, and/or the state of the item’s fulfillment or associated reversals. 
LineItem is the object used to capture the needed information for each item the shopper intends to purchase. 
 

Properties 

LineItem Property Type Category Required? Comments 

LineItemId String Metadata Required Transact-generated ID. It must be unique 
within the order. 

ProductId String Product Info Required Client-provided ID for the product item. Must 
uniquely identify a product item within the 
catalog provider. 

Product Name String Product Info Required May be provider-supplied or provided by the 
client. 

Product Description String Product Info Optional May be provider-supplied or provided by the 
client. 

Product Thumbnail Media Structure Product Info Optional May be provider-supplied. Includes:  

 Media URI 

 Media Type 

Unit of Measure String Product Info Required Provider-supplied by the Catalog. Unit in 
which a product is sold. Used to accurately 
describe and fulfill orders and ensure shoppers 
pay for and receive the correct quantity of 
products ordered. 

Product Taxability / Fees / 
SNAP-EBT eligibility 

String Product Info Optional May be provider-supplied or provided by the 
client. Fields used by Payments provider to 
determine if item may be paid for via SNAP-
EBT payment method, or used by Tax provider 
to determine if taxes and fees should be 
calculated for the item. 

Quantity Structure Quantity Required Provided as input by the client. Consists of: 
Unit — Specifies the unit used to specify 
quantity, e.g. “Each”, “lbs”, “oz”, “kg”, “g”, etc. 
Validated against Catalog provider to ensure 
unit provided by client is valid for the product 
ID. 
Amount — Enumerates the quantity. 
Validated against the Catalog provider to 
ensure that the amount is of a valid type, i.e., 
Integer for “Each”, Float for others. 

SerialNumber String Unit Info Optional Stores information about the specific unit of a 
product being sold, either as part of order 
creation (in the case of physical store 
purchases), or as part of order fulfillment (for 
e-commerce purchases). Supports the ability 
for retailers to require an identifier to be 
recorded when certain items, e.g., consumer 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  78 

LineItem Property Type Category Required? Comments 

electronics such as smartphones, computers, 
etc., are purchased, with the specific serial 
number or IMEI or other unique unit identifier 
added to the order document. This is to 
ensure that the shopper receives the exact 
unit that they purchased, and that they are 
unable to successfully return a different unit 
than the one which they purchased. 

Price Structure Price Required Provider-supplied from Catalog capability or 
Pricing capability, depending on workflow 
configuration and data availability. If both 
Catalog price and Pricing capability price is 
available, the Pricing capability’s price is used. 
This is the price used for cart and order 
subtotal and total calculations and passed to 
other capability providers such as Promotions 
and Taxes). Consists of:  
Unit — Specifies the unit used to specify price 
per unit, e.g. “Each”, “lbs”, “oz”, “kg”, “g”, etc. 
Validated against Catalog provider to ensure 
unit provided by client is valid for the product 
ID. 
Currency — Specifies the currency of the 
price, e.g. “USD”, “GBP”, etc.  
Amount — Enumerates the price per unit in 
the currency provided. 

PriceSource String Price Optional Transact-provided field that documents the 
data source for the price, e.g., “Catalog Base 
Price”, “Pricing Provider”, or “Client Override”. 
May include additional properties such as 
“Client Override Reason 

RegularPrice Structure Price Optional May be provider-supplied (from Catalog 
capability or Pricing capability, depending on 
workflow configuration) or provided by client. 
This is a purely informational property for 
providing additional context to retailers 
and/or shoppers, but is not used for checkout 
or by other capabilities. Consists of: 
Unit — Specifies the unit used to specify price 
per unit, e.g. “Each”, “lbs”, “oz”, “kg”, “g”, etc. 
Validated against Catalog provider to ensure 
unit provided by client is valid for the product 
ID. 
Currency — Specifies the currency of the 
price, e.g., “USD”, “GBP”, etc.  
Amount — Enumerates the price per unit in 
the currency provided. 

Discount Structure Promotions Optional May be provider-supplied or provided by 
client. Array of discount objects for various 
promotions and discounts. Each discount in 
the array includes: 
Promotion ID — Associates the discount with 
a promotion. 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  79 

LineItem Property Type Category Required? Comments 

Currency — Specifies the currency of the 
discount applied, e.g., “USD”, “GBP”, etc. 
Amount — Enumerates the discount applied 
(should be negative) to the line item in the 
currency provided. 

InventoryReservationId String Inventory Optional May be provider-supplied or provided by 
client. Associates the line item with the 
inventory if and when it is applicable. 

Taxes Structure Taxes Optional May be provider-supplied or provided by 
client. Array of objects for various taxes and 
fees. Optional for a line item to be recorded, 
but required for successful negotiation and 
finalizing/signing. Each item in the array 
consists of: 
Tax ID — Associates the tax or fee with a type 
of tax or fee (e.g., Sales Tax, VAT, Bottle 
Deposit, Sweetened Beverage Tax, etc.) 
Tax Name – Human-readable field defining 
the tax or fee. 
Currency — Specifies the currency of the tax 
or fee, e.g., “USD”, “GBP”, etc.  

Amount — Enumerates the tax or fee. 
FulfillmentRecipientDetails Structure Fulfillment 

Provider-
supplied 
information 
about available 
fulfillment 
options, and 
client-provided 
information 
about chosen 
fulfillment 
method and 
delivery 
destination. 

Optional Required for successful negotiation and 
signing if fulfillment method requires it, e.g., 
“Shipping”, or “Delivery”. Client-provided or 
provider-supplied information specifying the 
recipient and destination of line items to be 
fulfilled via fulfillment methods that ship 
directly to a recipient, and which may be used 
by the Tax provider to evaluate tax charges. 
May consist of a number of fields, including: 
Recipient Name 
Shipping Address 
Phone Number 

FulfillmentOptions Structure Fulfillment Optional Provider-supplied list of possible fulfillment 
options for a given line item. Each option in 
the list should consist of: 
Fulfillment option ID — Fulfillment provider 
ID for a particular fulfillment option 
Fulfillment option name — Human-readable 
name for the fulfillment option. 
Promise — Specifies the target fulfillment 
duration of the fulfillment option. 
Charges — Specifies the fees and taxes 
associated with the fulfillment option. 

PackageInfo structure Fulfillment Required Provider-supplied by the Catalog. Includes the 
dimension of the product to be shipped, 
including, length, width, height and weight. 
Required for Order Fulfillment capability. 

ShippingConstraints String Fulfillment Required Provider-supplied by the Catalog. Attributes 
that are used to determine fulfillment 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  80 

LineItem Property Type Category Required? Comments 

categorizations which may dictate how the 
item is handled or fulfilled. Includes: 

 Contains Lithium Battery 

 Contains Food or Beverage 

 Hazmat Class 

 Is Fragile? 
LineItemSubtotal Currency 

(decmal) 
Calculation Info Required Transact calculated subtotal of the line item 

cost. (Unit price x unit amount. 

LineItemTotal Currency 
(decmal) 

Calculation Info Required Transact-calculated total of the line item cost. 
(Unit price x unit amount + Fulfillment costs + 
Taxes & Fees + Discounts) 

 

instanceId 
The instanceId. 
Type: String 
Length Constraints: Fixed length of 36. 
Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12} 
Required: Yes jobId 
The jobId. 
Type: String 
Length Constraints: Fixed length of 36. 
Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12} 
Required: Yes s3uri 
The S3 URI from which the CSV is read. 
Type: String 
Length Constraints: Minimum length of 10. 
Pattern: [sS]3://[a-z0-9][a-z0-9.-]{1,61}[a-z0-9]/.+ 
Required: Yes status 
The ConfigurationJobStatus. 

BillOfMaterialsImportJob 
Type: String 
Valid Values: NEW | FAILED | IN_PROGRESS | QUEUED | SUCCESS 
Required: Yes message 

When the has reached a terminal state, there will be a message. 
Type: String Required: 
No 
 
 
 
 
 
 
 
 
 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  81 

Product Data Type 

A representation of the items a shopper is considering for purchase. A cart also contains sales context, e.g., 
date/time, order capture channel, shopper identity (when identified), and store location. At a minimum, a 
Transact cart contains a Transact-generated Cart ID, Transact engine metadata, datetimes for the cart’s 
creation and last update, and at least one line item. Multiple order negotiations can be initiated from a single 
cart. 
 
Transact is designed to support cart creation, management and storage, but if required, retailer developers 
may choose to create, manage, and store carts outside of Transact in the future and pass cart objects into 
Transact for use in order orchestration. Cart is the primary object used to capture and contain a retail 
customer’s intended order. 
 

Properties 

@documentation("All the product details for a given product") 
structure DetailedProductInfo { 
 
    @documentation("A unique ID created by a retailer to identify the product") 
    @required 
    productId: ProductId 
 
    @documentation("Label/name given to a product") 
    @required 
    title: MediumString 
 
    @documentation("Tax code defined by the tax vendor for the product") 
    @required 
    productTaxCode: SmallString 
 

@documentation("Unit of measure by which the product is being sold.  Refer to the Unit spec from JSR-
363.") 

    @required 
    unitOfMeasure: UnitOfMeasure 
 
    @documentation("The Type for the unit of measure") 
    unitType: UnitType 
 

    @documentation( 
        "A unique ID specific to a product catalog if the retailer has multiple catalogs. 
        This value should be provided by retail client when they have multiple catalogs and 
        need to specify which catalog the product belongs to." 
    ) 
    catalogId: CatalogId 
 

@documentation("Product shipping information, which will only be needed by ecommerce solutions") 
    productShippingInfo: ProductShippingInfo 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  82 

 
    @documentation("Brand/manufacturer name associated with the product") 
    brand: SmallString 
 
    @documentation("Product description") 
    description: XLargeString 
 
    @documentation("Age restriction for the product.") 
    ageRestriction: AgeRestriction 
 
    @documentation("Variant of the product defined by factors like color, size etc.") 
    variants: ProductVariantList 
 
    @documentation( 
        "Price of the product per unit of measure. This field provides the flat price of a product. 
        Retail clients that have different pricing strategy for the same product, e.g. loyalty price, holiday price 
etc.; 
        should rely on the Pricing capability for more accurate product prices." 
    ) 
    unitPrice: Amount 
 
    @documentation("Defines if tax is included or excluded as part of the item price") 
    isPriceTaxInclusive: Boolean 
 

    @documentation("Media information like images/videos associated with the product.") 
    media: MediaList 
 
    @documentation("The state of the product in catalog.") 
    status: ProductStatus 

 
    @documentation("Open content fields for additional product information.") 
    attributes: ProductAttributeList 

 
    @documentation("Last updated product date-time") 
    lastUpdatedAt: DateTime 
} 
 
@length(max:100) 
list DetailedProductInfoList { 
    member: DetailedProductInfo 
} 
 
@documentation("Media information like images/videos associated with the product.") 
structure Media { 

 
    @documentation("Media url") 
    @required 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  83 

    url: XLargeString 
 
    @documentation("Mime type of media- image/png, audio/wav etc. Reference - 
https://www.iana.org/assignments/media-types/media-types.xhtml") 
    mimeType: SmallString 
 
    @documentation("Label of the media") 
    label: SmallString 

 
    @documentation("Description of the media") 
    description: XLargeString 
} 
 
@length(max: 20) 
list MediaList { 
    member: Media 
} 
 
@documentation("Identifiers of a product") 
structure ProductIdentifier { 

    @documentation("A unique ID created by a retailer to identify the product") 
    @required 
    productId: ProductId, 
 
    @documentation( 
        "A unique ID specific to a product catalog if the retailer has multiple catalogs. 
        This value should be provided by retail client when they have multiple catalogs and 
        need to specify which catalog the product belongs to." 
    ) 
    catalogId: CatalogId 

} 
 
@length(min: 1, max: 100) 
list ProductIdentifierList { 
    member: ProductIdentifier 
} 
 
@documentation("Variant of the product defined by factors like color, size etc.") 
structure ProductVariant { 
 
    @documentation("Retailer catalog ID of the product variant") 
    catalogId: CatalogId 

 
    @documentation("Type of the variant - color, size etc.") 
    type: MediumString 

 
    @documentation("Retailer product ID of the product variant") 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  84 

    variantProductId: ProductId 
} 
 
@length(max: 200) 
list ProductVariantList { 
    member: ProductVariant 
} 
 
structure ProductAttribute with [Attribute] {} 
 
@length(max: 200) 
list ProductAttributeList { 
    member: ProductAttribute 
} 
 
@documentation("The state of the product in catalog") 
enum ProductStatus { 
    ACTIVE 
    ARCHIVED 
    DRAFT 
} 

 
 
 
 
ShopperId 

The AWS Transact Service Model unique shopper identifier to associate the shopper placing the order with 

a cart. 

@httpQuery("shopperId") 

$shopperId 

Type: String 
Length Constraints: Fixed length of 36. 
@pattern("^[A-Za-z0-9_-]+$") 
string ShopperId 

Required: Yes’ 
 

fulfillerAddress 
Address the line item(s) need to be shipped to. 

$fulfillerAddress 

fulfillerAddress: Address 

`    structure Address  {} 

Required: Yes’ 
lineItems 

structure LineItem { 
    id: String 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  85 

} 
list LineItemList { 
    member: LineItem 
} 
lineItems: LineItemList 
Required: Yes’ 

 s3uri 
The S3 URI from which the API service is invoked. 
Type: String 
Length Constraints: Minimum length of 10. 
Pattern: [sS]3://[a-z0-9][a-z0-9.-]{1,61}[a-z0-9]/.+ 
 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  86 

Pricing Data Type 

A representation of the items a shopper intends to purchase, the terms associated with how the shopper 
intends to purchase them, and the details of a retailer’s offer to sell the requested items to the shopper 
according to the terms the shopper has requested (“sales contract”). Like a cart, an order also contains sales 
context, e.g., date/time, order capture channel, shopper identity (when identified), and store location. 
 

Properties 

@documentation("All the prices for the given product") 
structure ProductPriceDetails { 
    @documentation("A unique ID created by a retailer to identify the product") 
    @required 
    productId: ProductId 
 
    @documentation("A unique ID specific to a product catalog if the retailer has multiple catalogs") 
    catalogId: CatalogId 
 
    @documentation("List of different prices offered for the retail product ID across the different pricelist that 
the retailer has created") 
    @required 
    prices: OfferPriceList 
} 
 
@documentation("Price offered for the retail product ID in a single pricelist that the retailer has created") 
structure OfferPrice { 
    @documentation("A retailer can have multiple price list that they maintain to have different pricing based 
on different factors (Purchase volume based pricing, seasonal pricing (holiday pricing), country/store front 
pricing etc.)") 
    @required 
    priceListId: PriceListId 
 
    @documentation("Name of the pricelist") 
    priceListName: MediumString 
 
    @documentation("Starting price of a single item of the product (based on uom)") 
    @required 
    unitBasePrice: Amount 
 
    @documentation("Sale price is what Transact or the retailer should be using to portray as the final price for 
the product to the customer and in the order") 
    @required 
    unitSalePrice: Amount 

 
    @documentation("Defines if tax is included or excluded as part of the item price") 
    @required 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  87 

    isPriceTaxInclusive: Boolean 
} 
 
@documentation("Line item with product related details") 
structure PricingLineItem { 
    @documentation("A unique ID created by a retailer to identify the product") 
    @required 
    productId: ProductId 
 
    @documentation("A unique ID specific to a product catalog if the retailer has multiple catalogs") 
    catalogId: CatalogId 
 
    @documentation("A retailer can have multiple price list that they maintain to have different pricing based 
on different factors (Purchase volume based pricing, seasonal pricing (holiday pricing), country/store front 
pricing etc.)") 
    @required 
    priceListId: PriceListId 

 
    @documentation("Quantity of the item") 
    quantity: Quantity 
} 
 
@documentation("Line item with price related details") 
structure PricingLineItemDetails { 
    @documentation("A unique ID created by a retailer to identify the product") 
    @required 
    productId: ProductId 

 
    @documentation("A unique ID specific to a product catalog if the retailer has multiple catalogs") 
    catalogId: CatalogId 
 
    @documentation("A retailer can have multiple price list that they maintain to have different pricing based 
on different factors (Purchase volume based pricing, seasonal pricing (holiday pricing), country/store front 
pricing etc.)") 
    priceListId: PriceListId    @required 

 
 
    @documentation("Quantity of the item") 
    quantity: Quantity 
 
    @documentation("Starting price of a single item of the product (based on uom)") 
    @required 
    unitBasePrice: Amount 

 
    @documentation("Sale price is what Transact or the retailer should be using to portray as the final price for 
the product to the customer and in the order") 
    @required 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  88 

    unitSalePrice: Amount 
 
    @documentation("Total price of all items without calculating discounts") 
    totalBasePrice: Amount 
 
    @documentation("Total price of all items after all discounts") 
    totalSalePrice: Amount 

 
    @documentation("Defines if tax is included or excluded as part of the item price") 
    @required 
    isPriceTaxInclusive: Boolean 
} 
 
@length(max: 300) 
list PricingLineItemDetailsList { 

    member: PricingLineItemDetails 
} 
 
@length(max: 300) 
list PricingLineItemList { 
    member: PricingLineItem 

} 
 
@length(max: 20) 
list OfferPriceList { 
    member: OfferPrice 
} 
 
@length(max: 300) 
list ProductPriceDetailsList { 
    member: ProductPriceDetails 
} 
 
@pattern("^[a-zA-Z0-9_-]+$") 
@length(max: 50) 
string PriceListId 

 
  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  89 

Tax Data Type 

A representation of an item that a shopper is considering purchasing or intends to purchase contained within 
carts and orders. This representation minimally includes an identifier of the product itself, the units and 
quantities that the shopper intends to purchase, and may include additional information as carts and orders 
evolve over the course of the shopping journey, including item details, prices, promotional discounts, taxes, 
fulfillment options, destination addresses, and/or the state of the item’s fulfillment or associated reversals. 
LineItem is the object used to capture the needed information for each item the shopper intends to purchase. 
 

Properties 

structure TaxableLineItem { 
    @documentation("Unique identifier for the line item") 
    @required 
    lineItemId: LineItemId 

 
    @documentation("The category of the line item.") 
    @required 
    lineItemType: LineItemType 
 
    @documentation("Quantity of the specific line item ( applies only to products )") 
    quantity: Quantity 
 
    @documentation("Cost per unit excluding discounts ( applies only to products )") 
    unitSalePrice: Amount 
 
    @documentation("Aggregate price of the line item before any promotions applied") 
    @required 
    aggregatePrice: Amount 
 
    @documentation("The tax code to use for this line item") 
    @required 
    productTaxCode: SmallString 
 
    @documentation("Description of the line item") 
    productDescription: XLargeString 
 
    @documentation("Defines if tax is included or excluded as part of the item price") 
    @required 
    isPriceTaxInclusive: Boolean 

} 
 
structure TaxGroup { 
    @documentation("Address to which the billing information is sent") 
    @required 
    billingAddress: Address 

 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  90 

    @documentation("Address where the order is shipped from") 
    @required 
    shipFromAddress: Address 
 
    @documentation("Address where the order is shipped to") 
    @required 
    shipToAddress: Address 
 
    @documentation("Collection of all taxable elements in the tax group. Each line item can correspond to 
PRODUCT, SHIPPING, SERVICE type etc.") 
    @required 
    lineItems: TaxableLineItemsList 
} 
 
structure DetailedTaxLineItem { 
    @documentation("Unique identifier for the line item") 
    @required 
    lineItemId: LineItemId 

 
    @documentation("The effective tax rate applied to the line item") 
    appliedTaxRate: BigDecimalString 
 
    @documentation("Taxable amount on which the taxes are calculated") 
    @required 
    lineItemTaxableAmount: Amount 

 
    @documentation("Total tax payable for the line item") 
    @required 
    lineItemTaxAmount: Amount 
 
    @documentation("Collection of tax information for the current line item") 
    @required 
    taxInfos: TaxInfoList 

} 
 
structure TaxInfo { 
    @documentation("The tax amount for the current tax type") 
    @required 
    amountForType: Amount 
 
    @documentation("The tax rate for the current tax type") 
    rateForType: BigDecimalString 

 
    @documentation("Name of the applied tax") 
    @required 
    name: MediumString 
 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  91 

    @documentation("Tax or Fee classification") 
    @required 
    classification: MediumString 
 
    @documentation("Subclassification providing detailed tax type information") 
    @required 
    subClassification: MediumString 
 
    @documentation("The source of the tax, corresponding to a Location type from input. Can be 'ORIGIN' or 
'DESTINATION'") 
    origin: TaxOrigin 
 
    @documentation("Name of the jurisdiction") 
    @required 
    jurisdictionName: MediumString 
 
    @documentation("Jurisdiction type, e.g. city, state, special district") 
    @required 
    jurisdictionType: JurisdictionType 
 
    @documentation("Location information for the Jurisdiction") 
    @required 
    jurisdictionLocation: Address 
} 
 
@length(max: 300) 
list DetailedTaxLineItemsList { 
    member: DetailedTaxLineItem 
} 
 
@length(max: 20) 
list TaxInfoList { 

    member: TaxInfo 
} 
 
@length(max: 300) 
list TaxGroupsList { 
    member: TaxGroup 

} 
 
@length(max: 300) 
list TaxableLineItemsList { 

    member: TaxableLineItem 
} 
 
enum LineItemType { 

    PRODUCT 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  92 

    SHIPPING 
    SERVICE 
} 
 
enum TaxOrigin { 
    ORIGIN 
    DESTINATION 
} 
 

 
 
 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  93 

Common Parameters 

The following list contains the parameters that the Cart and Order actions use. 
 
CartId 
   cartId: String 

       Required: Yes  
     @required 

@nestedProperties 

Type: CartDocument 

constraintViolations: ConstraintViolationList 
list ConstraintViolationlisst { 
    member: ConstraintViolations 
} 
structure ConstraintViolation { 
    category: String 
} 
Contains business violations in case the order could not be signed. 

 

 
ShopperId 

The AWS Transact Service Model unique shopper identifier to associate the shopper placing the order. 

@httpQuery("shopperId") 

$shopperId 

@pattern("^[A-Za-z0-9_-]+$") 
string ShopperId 

Required: Yes’ 
 

fulfillerAddress 
Address the line item needs to be shipped to. 

$fulfillerAddress 

fulfillerAddress: Address 

` structure Address  {} 
 

lineItems 
structure LineItem { 
    id: String 
} 
list LineItemList { 
    member: LineItem 
} 
lineItems: LineItemList 
Required: Yes  

 
@input 
structure CreateCartLineItemsInput for Cart with [TransactBaseInput] { 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  94 

   @required 
    @nestedProperties 
    cart: CartDocument} 
  constraintViolations: ConstraintViolationList 
} 
structure CartDocument for Cart { 

  @required 
} 
 
orderId 
   orderId: String 

       Required: Yes  
Order 
    @nestedProperties 
    order: OrderDocument 
structure OrderDocument for Order { 
    @required 
    @input 
    structure CreateOrderInput for Order with [TransactBaseInput] { 
    @property(name: "lineItemInputs") 

Required: Yes 
ListOrders 
     list: ListOrders {} 
  member: Orders 
Orders 

orders: OrderIdList 
The list of found Order object(s). 

 
payments 
    $payments 
  payments: PaymentList 
  list PaymentList { 
     member: Payment 
  } 
recipients 
    $recipients 
    recipients: RecipientList 
  list RecipientList { 
      member: Recipient 
  } 

discountApplications 
    $discountApplications 
    discountApplications: DiscountApplicationList 
  list DiscountApplicationList { 
      member: DiscountApplication 
  } 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  95 

fulfillmentOptionSelection 
    @notProperty 
    fulfillmentOptionSelection: FulfillmentOptionSelection 
  list FulfillmentOptionSelectionList { 
      member: FulfillmentOptionSelection 
  } 

buyingApplication 
    @property(name: "buyingApplicationInput") 
    buyingApplication: BuyingApplicationInput 
    $fulfillmentOptionSelections 
    $buyingApplication 
 
@documentation("Input of BatchGetProduct API") 
@input 
structure BatchGetProductInput with [CapabilityBaseInput] { 
    @documentation("List of product identifiers") 
    @required 
    productIdentifiers: ProductIdentifierList, 
 
} 
@documentation("Error of a product failed to get product detail") 
structure BatchGetProductError { 
    @documentation("Identifiers of a product") 
    @required 
    productIdentifier: ProductIdentifier, 

 
@documentation("Localization information to use to return the product information in a particular 
language") 

    shopperLocale: Locale 
 
    @documentation("Error code of a product failed to get product detail") 
    @required 
    code: String, 

 
    @documentation("Error message of a product failed to get product detail") 
    @required 
    message: String, 
} 
 
@length(max: 100) 
list BatchGetProductErrors { 
    member: BatchGetProductError 

} 
 
 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  96 

Common Errors 

This section lists the errors common to the API actions of all AWS services. For errors specific to an API action 

for this service, see the topic for that API action. 

AccessDeniedException 

You do not have sufficient access to perform this action. 
HTTP Status Code: 403 
 

ExpiredTokenException 

The security token included in the request is expired 
HTTP Status Code: 403 
 

IncompleteSignature 

The request signature does not conform to AWS standards. 
HTTP Status Code: 403 
 

InternalFailure 

The request processing has failed because of an unknown error, exception or failure. 
HTTP Status Code: 500 
 

MalformedHttpRequestException 

Problems with the request at the HTTP level, e.g. we can't decompress the body according to the 
decompression algorithm specified by the content-encoding. 
HTTP Status Code: 400 
 

NotAuthorized 

You do not have permission to perform this action. 
HTTP Status Code: 401 
 

OptInRequired 

The AWS access key ID needs a subscription for the service. 
HTTP Status Code: 403 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  97 

RequestAbortedException 

Convenient exception that can be used when a request is aborted before a reply is sent back (e.g. client 
closed connection). 
HTTP Status Code: 400 
 
 

RequestEntityTooLargeException 

Problems with the request at the HTTP level. The request entity is too large. 
HTTP Status Code: 413 
 
 

RequestExpired 

The request reached the service more than 15 minutes after the date stamp on the request or more than 
15 minutes after the request expiration date (such as for pre-signed URLs), or the date stamp on the 
request is more than 15 minutes in the future. 
HTTP Status Code: 400 
 

 

RequestTimeoutException 

Problems with the request at the HTTP level. Reading the Request timed out. 
HTTP Status Code: 408 
 
 

ServiceUnavailable 

The request has failed due to a temporary failure of the server. 
HTTP Status Code: 503 
 
 

ThrottlingException 

The request was denied due to request throttling. 
HTTP Status Code: 400 
 
 

UnrecognizedClientException 

The X.509 certificate or AWS access key ID provided does not exist in our records. 
HTTP Status Code: 403 
 
 



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  98 

UnknownOperationException 

The action or operation requested is invalid. Verify that the action is typed correctly. 
HTTP Status Code: 404 
 
 

ValidationError 

The input fails to satisfy the constraints specified by an AWS service. 
HTTP Status Code: 400 
 
 

  



AWS Transact Gateway Service API Reference 

Transact Cart, Order & Capabilities APIs          page  99 

Language-Specific AWS SDKs 

For more information about using these APIs in one of the language-specific AWS SDKs, refer to the following 

links: 

• AWS Command Line Interface 

• AWS SDK for .NET 

• AWS SDK for C++ 

• AWS SDK for Go 

• AWS SDK for Java V2 

• AWS SDK for JavaScript V3 

• AWS SDK for PHP V3 

• AWS SDK for Python 

• AWS SDK for Ruby V3 

 

https://docs.aws.amazon.com/goto/aws-cli/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/SdkForCpp/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/SdkForGoV1/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/SdkForJavaV2/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/boto3/supplychain-2024-01-01/GetBillOfMaterialsImportJob
https://docs.aws.amazon.com/goto/SdkForRubyV3/supplychain-2024-01-01/GetBillOfMaterialsImportJob

	Introduction and Needed Services
	API Actions
	Cart APIs
	CreateCart
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Cart

	Errors

	CreateCartLineItems
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Cart

	Errors

	GetCart
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	UpdateCart
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	DeleteCart
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	ListCarts
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors


	Order APIs
	CreateOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	CreateOrderLineItems
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	GetOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	UpdateOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	UpdateOrderFulfillments
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	UpdateOrderReturns
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	UpdateSignedOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	DeleteOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	ListOrders
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors

	SignOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	CancelOrder
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors


	Catalog APIs
	GetProduct
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	BatchGetProduct
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors


	Pricing APIs
	GetProductPrices
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Structure
	Response Elements
	Errors

	GetProductPricesForLineItems
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors


	Tax API
	GetTaxesForLineItems
	Request Syntax
	URI Request Parameters
	Request Actions
	Response Syntax
	Response Elements
	Errors


	Data Types
	Cart Data Type
	Properties
	ShopperId
	fulfillerAddress
	lineItems


	Order Data Type
	Properties
	orderId
	lineItems
	shopperId
	fulfillerAddress
	payments
	recipients
	discountApplications
	fulfillmentOptionSelection
	buyingApplication


	LineItem Data Type
	Properties
	instanceId


	Product Data Type
	Properties
	ShopperId
	fulfillerAddress
	lineItems


	Pricing Data Type
	Properties

	Tax Data Type
	Properties


	Common Parameters
	CartId
	ShopperId
	fulfillerAddress
	lineItems
	orderId
	ListOrders
	Orders
	payments
	recipients
	discountApplications
	fulfillmentOptionSelection
	buyingApplication

	Common Errors
	Language-Specific AWS SDKs

