
VMware, Inc. VMware ESXi 8.0

Version 1.0 1

TOE Design (ADV_TDS.3): VMM Subsystem
VMware ESXi 8.0

 Author: VMware

 Version: 1.0

 Date: 2022-08-10

 Cert-ID:

 Company: VMware, Inc.

3401 Hillview Ave, Palo Alto, CA 94304, USA, www.vmware.com

VMware, Inc. VMware ESXi 8.0

Version 1.0 2

VMware, Inc.

3401 Hillview Ave
Palo Alto, CA 94304

United States of America

http://www.vmware.com

Copyright © 1998 - 2022 VMware, Inc. All rights reserved. This product is protected by
copyright and intellectual property laws in the United States and other countries as well as by
international treaties. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and other
jurisdictions. All other marks and names mentioned herein may be trademarks of their
respective companies.

http://www.vmware.com/
http://www.vmware.com/go/patents

VMware, Inc. VMware ESXi 8.0

Version 1.0 3

Revision History

Version Description of changes Modified by Date

1.0 Initial Draft Version Nicholas Leuci 2022-08-10

VMware, Inc. VMware ESXi 8.0

Version 1.0 4

Table of Contents

Contents

Revision History ... 3

1 Introduction .. 6

2 Subsystems of the TOE .. 7

2.1 Interaction between sub-systems ... 8

2.2 Subsystem AAA ... 8

2.3 Subsystem BBB. .. 9

2.4 Subsystem CCC ... 9

4 Virtual Machine Monitor (VMM) Subsystem .. 10

4.1 VMM Hardware Virtualization (SFR-ENFORCING) ... 11
4.1.1 Security Functionality (SF) ... 13
4.1.2 Security Functional Requirement (SFR)... 13
4.1.3. Provided TSFI ... 13

4.1.4.1 Internal Interfaces (Context-switching between VMM and VM). 14
4.1.4.2 Internal Interfaces (Sensitive host fields for context-switch) .. 16
4.1.4.3 Internal Interfaces (Sensitive host field for posted interrupts) ... 17
4.1.4.4 Internal Interfaces (Controls determining circumstances causing HV exits) 18

4.1.5 Used interfaces of other modules .. 20
4.1.6 Mapping to the Source Code ... 21
4.1.7 Appendix A: Bibliography for the Intel VT References ... 22
4.1.8 Appendix B: Navigating HV module code .. 23

4.2 VMM HV Memory Management (SFR-ENFORCING) .. 23
4.2.1 Security Functionality (SF) ... 26
4.2.2 Security Functional Requirement (SFR)... 26

4.2.3 Provided TSFI .. 26
4.2.4.1 Internal Interfaces of the Module (General execution) ... 26
4.2.4.2 Internal Interfaces of the Module (VNPT, for nested guest memory virtualization) ... 29

4.2.5 Used interfaces of other modules .. 32
4.2.6 Mapping to the Source Code ... 32
4.2.7 Appendix A: Bibliography for Intel Documentation References (EPT) 35
4.2.7 Appendix B: Navigating Guest Memory Module Code ... 35

4.3 VMM Host Interrupts IDT, APIC, MAP (SFR-ENFORCING) 36
4.3.1 Security Functionality (SF) ... 37
4.3.2 Security Functional Requirement (SFR)... 37
4.3.3 Provided TSFI .. 37

4.3.4.1 Internal Interfaces of the Module ... 37
4.3.4 Used interfaces of other modules .. 38
4.3.5 Mapping to the Source Code ... 38
4.3.6 Appendix A: Navigating Interrupt Optimization Module Code ... 39

4.4 VMM Hot Path (SFR-NON-INTERFERING) .. 40
4.4.1 Mapping to the Source Code ... 41

4.5 VMM Instruction Emulation (SFR-NON-INTERFERING) 41
4.5.1 Mapping to the Source Code ... 42

VMware, Inc. VMware ESXi 8.0

Version 1.0 5

4.5.2 Appendix A: Published Technical Research Bibliography ... 42

4.6 VMM Guest Interrupts (SFR-NON-INTERFERING) ... 43
4.6.1 Mapping to the Source Code ... 43

4.7 VMM Timekeeping (SFR-NON-INTERFERING) ... 43
4.7.1 Mapping to the Source Code ... 45

4.8 [vmKernel] VMM-VMK (SFR- ENFORCING) .. 45
4.8.1 Security Functionality (SF) ... 46
4.8.2 Security Functional Requirement (SFR)... 46
4.8.3 Provided TSFI .. 46

4.8.4.1 Internal Interfaces of the Module (World-Switch: Model-Specific Registers) 47
4.8.4.2 Internal Interfaces of the Module (World-Switch: VT State) .. 49
4.8.4.3 Internal Interfaces of the Module (VMKCall: State Flushing) .. 50

4.8.5 Used interfaces of other modules .. 51
4.8.6 Mapping to the Source Code ... 51
4.8.7 Appendix A: Navigating VMM-VMK Entry Module Code ... 54

4.9 VMM SGX (SFR-NON-INTERFERING) .. 55
4.9.1 Mapping to the Source Code (Interpreter support) ... 56
4.9.2 Appendix A: Bibliography for the Intel SGX References .. 56

VMware, Inc. VMware ESXi 8.0

Version 1.0 6

1 Introduction

This document contains a description of the TOE Design, which is required by ADV_TDS.3.
Thereby the TOE is subdivided in terms of subsystems and modules,

VMware, Inc. VMware ESXi 8.0

Version 1.0 7

2 Subsystems of the TOE

Subsystem: High-Level Description of the different parts oft he TOE. It needs to be described
what the main purpose of the subsystem and how.

Module: Additional subdivision of the subsystems and a More detailed description about their
Implementation (e.g., based on libraries)

For each sub system (all are at high level):

- High level Subsystem description
- Near source code level description

o Need to write SFRs security enforcing, supporting and non-interfering
o Not in near source code level detail for parts of subsystem that are related to

non-interfering SFRs
o Modules that are non-interfering, don’t need to be described in near-source

code level detail.

The TOE can be subdivided into the following subsystems:

• Subsystem AAA
Here a short description about the purpose of the subsystem should be entered.

• Subsystem BBB
Here a short description about the purpose of the subsystem should be entered.

• Subsystem CCC
Here a short description about the purpose of the subsystem should be entered.

• …

The figure below gives an overview about the architecture of the TOE and how the TOE can
be subdivided into Subsystems and modules

Put the detailed figures of the overall TOE. Put the low-level-ESXI architecture document.
How we draw the boundaries of modules in the sub-system is up to us. Multiple images will
be supplied.

VMware, Inc. VMware ESXi 8.0

Version 1.0 8

2.1 Interaction between sub-systems

Figure 1: TOE Subsystems and Modules

.

Please give a short explanation of Figure 1. Thereby especially the purpose and the
interactions between the subsystems should be explained.

2.2 Subsystem AAA

Detailed Description of the purpose and content of subsystem AAA. Each group adds their
own subsystem section.

Still high-level description – half a page to one-to-two page level. Overview of which modules
are in the subsystem; how the modules relate to each other. Overview of APIs of modules, i.e.,
communication between VMkernel and Monitor.

VMware, Inc. VMware ESXi 8.0

Version 1.0 9

2.3 Subsystem BBB.

Detailed Description of the purpose and content of subsystem BBB. Each group adds their
own subsystem section.

2.4 Subsystem CCC

Detailed Description of the purpose and content of subsystem CCC. Each group adds their
own subsystem section.

VMware, Inc. VMware ESXi 8.0

Version 1.0 10

4 Virtual Machine Monitor (VMM) Subsystem

A. Subsystem Diagram

SFR Color Red – Enforcing modules
Encoding Yellow – Supporting modules
Legend: Green – Non-Interfering modules

B. High Level Summary

The Virtual Machine Monitor (hereafter "VMM") is a kernel-mode program responsible for
execution of virtual CPUs. One VMM program instance exists per VM. One VMM world
(thread) exists for each virtual CPU in a VM.

VMM presents virtual hardware to the virtual machine and causes its virtual CPUs to make
progress in execution, in a high-performance manner, with proper isolation and security.
VMM relies on hardware virtualization (via Intel's VT) and, to a lesser extent, instruction
emulation for this purpose.

VMM exposes virtual hardware to VM software and handles the edges of this interaction,
including virtual interrupts and virtualized device access. VMM exposes memory to a VM as
well. As such, VMM is responsible for managing views of memory.

VMM also implements and supports various virtualization features. Some features include
nested virtualization (such that a VM can, internally, run a nested VM) and virtualization of
CPU features such as secure enclave execution via Intel's SGX.

VMM interacts with other software in the TOE by switching to the vmKernel when required.
VMM cooperates with the vmKernel (vmKernel RM CPU Subsystem) to share the host CPU

VMware, Inc. VMware ESXi 8.0

Version 1.0 11

(as both pieces of software are kernel-mode, privileged software). VMM is largely
subordinate to the vmKernel, as the vmKernel RM CPU Subsystem decides scheduling of
host worlds such as those worlds running VMM.

C. List of Modules

Module Name Brief Description Security Type

Hardware
Virtualization

Support for Intel's VT CPU virtualization support, both for
regular VMs and those containing nested VMs. Manages
and executes context-switching between VMM software
in the TOE and the Virtual Machine domain (VM).

SFR-ENFORCING

HV Memory
Management

Virtualization of guest memory including presentation of
vmKernel-provided memory to the VM and any nested
VMs run inside.

SFR-ENFORCING

VMM/VMK
Entry

Context-switching between VMM and the vmKernel and
associated optimizations.

SFR-ENFORCING

Host
Interrupt/IDT

Optimized Inter-Processor Interrupt support for fast
synchronous signaling between VCPUs of a single VM.

SFR-ENFORCING

SGX
Virtualization of Intel Software Guard Extensions support
for secure enclaves.

SFR-NON-INTERFERING

Guest Interrupts
VM-internal virtual interrupt support, including delivery of
virtual interrupts to virtual VCPUs for consumption in the
VM.

SFR-NON-INTERFERING

Instruction
Emulation

Correct emulation of instructions, as a fallback when fast
handling of a VT exit is impossible, or emulation is
otherwise required.

SFR-NON-INTERFERING

Hot Path
Fast handling of VT exits from the Hardware Virtualization
module.

SFR-NON-INTERFERING

Timekeeping Management of VM-perceived time. SFR-NON-INTERFERING

4.1 VMM Hardware Virtualization (SFR-ENFORCING)

The VMM Hardware Virtualization (hereafter "HV") module runs as part of the Virtual
Machine Monitor (part of the TOE, a kernel-mode program with one instance per VM,
hereafter "VMM"). The HV module implements execution of the virtual machine domain
(guest OS, hereafter "VM" or "guest") by use of Hardware Virtualization ("HV") provided by
the Intel CPU Virtualization Technology (known by Intel as "VMX" but hereafter referred to by
the VMware term, "VT"). The HV module manages CPU and VT state, and handles switches
to and from VM execution, for various reasons.

Once initialized, the HV module runs in a loop:

1. enter VM execution (hereafter known as an "HV resume"),

VMware, Inc. VMware ESXi 8.0

Version 1.0 12

2. wait for the CPU to exit VM execution and return to VMM (hereafter known as an "HV
exit"),

3. determine from exit description what handler to run,
4. call that handler,
5. and likely return to the first step: HV resume.

The HV module is responsible for isolating the VM from the VMM (and other host software).
This isolation is implemented two ways: (1) by careful constraint of and description of VM
execution using VT state and (2) by careful context-switching of CPU state, avoiding
undesirable effects upon VMM (and other host software).

VT contains a Virtual Machine Control Structure (hereafter "VMCS") which defines state for
the CPU to load upon HV resume and HV exit, as well as controls constraining VM execution
and under what conditions HV exits shall occur. The HV module programs the VMCS
accordingly. Intel describes the VMCS, VT and related information in Intel Software
Developers Manual, Volume 3C: System Programming Guide, Part 3, Chapters 23-27 and
30 (See 4.1,7 Appendix A below).

The HV module is responsible for context-switching of VM state. This context-switching
occurs in different ways, at different points in code: at HV resume and HV exit (automatically
via VT), in code paths immediately before HV resume and after HV exit (in software, via the
HV module), and in deferred code paths transitioning between pieces of software in the TOE
(in the VMM/VMK Entry Module, 4.8).

Because the VMCS defines when the VM may cause HV exits, and because the HV module
must context-switch VM CPU state (which could, unswitched, affect other software in the
TOE), the HV module is SFR-enforcing for FPT_VIV_EXT.1.1. Because the handling of HV
exits (which could, handled incorrectly, affect other software in the TOE) is implemented in
the HV module, it is SFR-enforcing for FPT_VIV_EXT.1.2.

The HV module implements nested virtualization support, allowing a VM run encapsulated
VMs of its own. The module implements Virtualized Hardware Virtualization (hereafter
"VHV") and specifically for Intel, it implements Virtual VT (hereafter "VVT"). VHV is supported
for Microsoft Windows guests using Hyper-V, which rely upon an implementation of VT (here,
our VVT) for the Microsoft implementation of Virtualization-Based Security.

When VVT is in use, the guest software is split conceptually into two parts: the inner
hypervisor (which programs and uses VVT via VT semantics) and the inner guest (which
runs under control of the HV module, with additional description and constraints added by the
inner hypervisor). For performance, the HV module uses two VMCS structures when running
with VVT: a standard VMCS and a nested VMCS. The standard VMCS describes and
constrains the inner hypervisor, while the nested VMCS describes and constrains the inner
guest. Only one VMCS is active at a given time, with transitions and management of VMCS
state optimized carefully.

When a VMCS is not in active use, its values may be modified by live execution (e.g. the
inner hypervisor writing new configuration to the nested VMCS to constrain the inner guest).

VMware, Inc. VMware ESXi 8.0

Version 1.0 13

The HV module maintains an in-memory cache of nested VMCS state and tracks dirty
subportions of this cache, deferring recomposition of the nested VMCS until just before its
live use.

When switching between executing the inner hypervisor and the inner guest, HV controls
must be updated in the VMCS that is about to become active. This update carefully
composes as safe VMCS. When transitioning to executing the inner guest, the VMCS
combines the wishes of the inner hypervisor (as described in the nested VMCS) and the
requirements of the HV module (as described in the standard VMCS).

For performance reasons, some VMCS fields allow the guest (be it the inner hypervisor or
the inner guest) to access certain CPU resources directly, without exiting to the HV module.
Such resources are those which are either inherently harmless to the TOE (e.g. guest
general-purpose registers) or those which are context-switched carefully shortly after HV exit
(e.g. side-channel mitigation model-specific registers which do no harm to execution of the
TOE during the brief moment between HV exit and context-switching).

VT's VMCS contains controls and structures related to guest-visible memory. That state and
its management is handled by The VMM HV Memory Module (4.2).

HV exit handling in the HV module will call into other modules, depending upon the exit
condition.

The HV module cannot be disabled and is always used in the running of VMs.

4.1.1 Security Functionality (SF)

See the table in Section 4.1.2.

4.1.2 Security Functional Requirement (SFR)

Security Function (SF)
Security Function

Requirement (SFR) Rationale

SF6.Protection of the TSF
(FPT)

FPT_VIV_EXT.1.1

The TSF shall maintain a security domain for the
execution of each virtual machine that protects the
virtual machine from interference and tampering by
untrusted subjects or subjects from outside the
scope of the VM.

SF6.Protection of the TSF
(FPT)

FPT_VIV_EXT.1.2
The TSF shall enforce separation between the
security domains of VMs in the TSC.

4.1.3. Provided TSFI

This module has no TSFI as it is an internal module and has no exposure to outside the
TOE.

VMware, Inc. VMware ESXi 8.0

Version 1.0 14

4.1.4.1 Internal Interfaces (Context-switching between VMM and VM).

Module Function
Security
Function(s)

SFR(s) Parameters Return Value Rationale

HVResume
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None

None. Does not
return to caller.
Exits at VMCS
HOST_RIP.

Main entry
point to HV
resume
functionality
in VMM.

HV_StepToSafePointAndRes
ume

SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None

None. Does not
return to caller.
Exits at VMCS
HOST_RIP.

Alternate
path to call
VMM
Instruction
Emulation
Module (see
4.5), then
program
VMCS with
VMM state
and
proceed to
resume.

HVVendorSpecificResume
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None

None. Does not
return to caller.
Exits at VMCS
HOST_RIP.

Program
VMCS with
VM state
(program
counter,
stack
pointer,
CPU flags,
pending
interrupt
information
if any)

HVMSR_VMEnter
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None
None. (void
function).

Reload any
software-
switched
Model-
Specific
Registers to
VM values.

HVResumeLowLevel
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None

None. (Assembly
function taking no
arguments). Does
not return to
caller.

Load VM
general-
purpose
register
state into
CPU,
execute VT
"vmresume"
instruction
to actuate
switch from
VMM to VM

VMware, Inc. VMware ESXi 8.0

Version 1.0 15

Module Function
Security
Function(s)

SFR(s) Parameters Return Value Rationale

HVExitLowLevel

SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1,
FPT_VIV_EXT.1.2

None

None. (Assembly
function entered
directly by
hardware). Does
not return to caller
as there is no
caller.

Main exit
point from
VM back to
VMM.
Saves VM
general-
purpose
register
state from
CPU and
immediately
loads
zeroes into
most such
registers.
VMM
software is
now in
control of
the CPU.

HVVendorSpecificExit

SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1, None
None. Does not
return to caller.

Saves more
VM state,
reloads
more VMM
state.

HVMSR_VMExit
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None
None. (void
function).

Reloads
any
software-
switched
Model-
Specific
Registers
back to
VMM
values.

HVExit

SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

reason - VT
exit reason,
idtVecInfo -
VT-provided
IDT
vectoring
information

None (void
function), does not
return.

Processes
exit cause
provided by
VT, calling
various
other code
to handle
each type of
exit. (TBD:
explain
more/better)
.

VMware, Inc. VMware ESXi 8.0

Version 1.0 16

Module Function
Security
Function(s)

SFR(s) Parameters Return Value Rationale

VVT_VMENTER
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

launch -
whether
launching
(the first
entry,
before
having
resumed) or
resuming

instrLen -
the length
of the
instruction
attempting
the launch
(to advance
past, upon
success)

An x86fault
object pointer,
representing
either a specific
failure, or
successful VM
entry
(X86Fault_None
or similar).

Switch to
the nested
guest
VMCS,
ready for
HV resume
into the
nested
guest, if
successful.

4.1.4.2 Internal Interfaces (Sensitive host fields for context-switch)

Module Function
Security

Function(s)
SFR(s)

VMCS fields
protected

Parameters
Return
Value

Rationale

HVVTInitVMCSH
ostFields

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EX
T.1.1

HOST_CS,
HOST_ES,
HOST_SS,
HOST_DS,
HOST_TR,
HOST_PAT,
HOST_EFER,
HOST_CR3,
HOST_TRBAS
E,
HOST_GDTRB
ASE,
HOST_IDTRBA
SE,
HOST_RSP,
HOST_RIP

None

None.
(void
functio
n).

Basic host register
state loaded upon HV
exit. Static after
initialization. Provides
program counter
(HOST_RIP) to execute
HVExitLowLevel, stack
pointer (HOST_RSP)
and other basic state,
automatically switched
by VT support in the
CPU. Ensures
fundamental register
state in VMM
unaffected by VM
values.

HV_SetHostCR0
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EX
T.1.1

HOST_CR0 None

hostC
R0 -
value
to set
in cr0

Another fundamental
control register loaded
upon HV exit.

HV_SetHostCR4
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EX
T.1.1

HOST_CR4 None

hostC
R4 -
value
to set
in cr4

Another fundamental
control register loaded
upon HV exit.

VMware, Inc. VMware ESXi 8.0

Version 1.0 17

Module Function
Security

Function(s)
SFR(s)

VMCS fields
protected

Parameters
Return
Value

Rationale

HV_SetNestedPa
gingRoot

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EX
T.1.1 EPTP

l4MPN -
MPN
correspondi
ng to EPTP
to populate.

None.
(void
functio
n).

Sets the VT nested
paging root (VMCS
field EPTP) to a given
value. (See module
4.2: VMM guest
memory)

4.1.4.3 Internal Interfaces (Sensitive host field for posted interrupts)

Module Function
Security

Function(s)
SFR(s)

VMCS fields
protected

Parameters
Return
Value

Rationale

HVVTInitPostedInterrupts
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.
1.1

PI_NOTIFY,
PI_DESC_ADDR

None
None.
(void
function).

Allow VT
operation
to use
posted
interrupts
without
incurring
an HV exit
when the
notification
vector is
used to
raise an
inter-
processor
interrupt
from
another
CPU. If the
vector were
mis-
programme
d,
interrupts
could be
dropped,
resulting in
host
stability.

VMware, Inc. VMware ESXi 8.0

Version 1.0 18

4.1.4.4 Internal Interfaces (Controls determining circumstances causing HV
exits)

Module
Function

Security
Function(s)

SFR(s)
VMCS
fields

protected
Parameters Return Value Rationale

HVSetVMCSP
inCtl

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

PIN_VME
XEC_CTL

None
None. (void
function).

Configures handling (whether
to HV exit) of asynchronous
events such as interrupts
(including host interrupts
unrelated to the currently-
running VM). Careful
programming of these
controls guarantees VM
interruptibility and allows host
software in the TOE (VMM,
the vmkernel) to operate
effectively.

HVSetVMCSC
PUCtl

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

CPU_VME
XEC_CTL,

2ND_VME
XEC_CTL

None
None. (void
function).

Configures handling (whether
to HV exit) of synchronous
processor events (mostly
execution of specific
instructions and related
circumstances). Used to
inhibit direct access to
sensitive host resources (e.g.
port I/O instructions on the
physical CPU) and to
otherwise constrain VM
execution.

HVSetVMCSE
xitCtl

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

VMEXIT_C
TL

None
None. (void
function).

Configured automatic actions
performed by the CPU at VT
exit, such as entering long
mode (64-bit execution, as
requited by the TOE – see
VT_REQUIRED_EXIT_CTLS)
.

HVSetVMCS2
ndCtl

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

2ND_VME
XIT_CTL

None
None. (void
function).

Configured automatic actions
performed by the CPU at VT
exit (secondary list). For
example, whether EPT is
enabled (used by module 4.2:
VMM HV Memory
Management).

HVSetVMCSX
CPCtl

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

XCP_BITM
AP

None
None. (void
function).

Force #AC exceptions to HV
exit. Without this, a CPU can
be caught in an infinite #AC
loop due to a malicious VM.
Force machine checks to exit,
to be reported to the host
kernel. See also
HV_XCP_MASK. Allows
other forcing of exceptions to
exit, as well.

VMware, Inc. VMware ESXi 8.0

Version 1.0 19

Module
Function

Security
Function(s)

SFR(s)
VMCS
fields

protected
Parameters Return Value Rationale

HVSetMSRBit
map

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

MSRBITM
AP

None
None. (void
function).

Enables bitmap allowing for
non-exiting access to specific
Model-Specific Registers,
which are in turn context-
switched in
HVExit/HVResume when
made accessible this way.

HV_SetMSRIn
tercept

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

MSRBITM
AP

bitmap - the
bitmap
address,

msrNum -
the MSR to
intercept,

accessMod
e - the
read/write
access to
intercept

None. (void
function).

Denies non-exiting access to
a specific Model-Specific
Register.

HV_ClearMSR
Intercept

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

MSRBITM
AP

bitmap - the
bitmap
address,

msrNum -
the MSR not
to intercept,

accessMod
e - the
read/write
access not
to intercept

None. (void
function).

Allows non-exiting access to
a specific Model-Specific
Register.

HVSetVMCSE
nclsBitmap

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

ENCLS_E
XITING_BI
TMAP

None
None. (void
function).

Enables bitmap allowing for
non-exiting execution of
ENCLS instruction for some
situations. See module 4.8:
SGX.

HVSetVMCSE
nclvBitmap

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_E
XT.1.1

ENCLV_E
XITING_BI
TMAP

None
None. (void
function).

Enables bitmap allowing for
non-exiting execution of
ENCLV instruction for some
situations. See module 4.8:
SGX.

VMware, Inc. VMware ESXi 8.0

Version 1.0 20

4.1.5 Used interfaces of other modules

Module Function Module Description Parameters
Return
Value File

HVTryFastExit
4.4 Fast
Path

Attempts to
handle VT exit
information
quickly

reason - VT
exit reason

None
(void
function)
, does
not
return if
handled.

vmcore/monitor/vmm/hv/vt/hv-
common.h

HVTryFastNestedExit
4.4 Fast
Path

Attempts to
handle VT exit
information
quickly, for
inner guest
execution

reason - VT
exit reason,
idtVecInfo -
VT-provided
IDT
vectoring
information

None
(void
function)
, does
not
return if
handled.

vmcore/monitor/vmm/hv/vt/hv-
common.h

Interp_Step
4.5
Instruction
Emulation

Emulates one
guest
instruction,
delivering any
resulting faults
to the guest.
Run-time
entrypoint to
the interpreter.

None.
None
(void
function)

vmcore/monitor/common/cpu/x86/int
erp.c

MonMSR_SetMSR
4.8
VMM/VMK
interface

Communicates
to switching
interface
properties of
the given MSR
(whether it
must be
reloaded and
with what
value, when
entering/exiting
VMM)

msr -
Model-
Specific
Register
(from short
list of
allowed
values),
newVal -
new value
for MSR,

flags -
switching
reload
properties

None
(void
function)

vmcore/public/monMSR.h

MonMSR_SetMSRUnused
4.8
VMM/VMK
interface

Communicates
to the
switching
interface that
the given MSR
does not need
to be reloaded
when entering
VMM (VMM
can run with
any value,
without ill
effect).

msr -
Model-
Specific
Register
(from short
list of
allowed
values)

None
(void
function)

vmcore/public/monMSR.h

VMware, Inc. VMware ESXi 8.0

Version 1.0 21

4.1.6 Mapping to the Source Code

Function Description File

HVResume Entry point for HV resume flow. vmcore/monitor/vmm/hv/common/hv.c

HV_StepToSafePointAndResume
Corner case for emulation before
HV resume.

vmcore/monitor/vmm/hv/common/hv.c

HVVendorSpecificResume
VT-specific HV resume, next
step after HVResume

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVMSR_VMEnter Model-Specific Register switch vmcore/monitor/vmm/hv/common/hvMSR.c

HVResumeLowLevel
Final switch of state and actual
transition to VM execution

vmcore/monitor/vmm/hv/vt/vtasm.S

HVExitLowLevel
Initial switch from VM execution,
save of VM state

vmcore/monitor/vmm/hv/vt/vtasm.S

HVVendorSpecificExit VT-specific HV exit vmcore/monitor/vmm/hv/vt/hv-vt.c

HVMSR_VMExit Model-Specific Register switch vmcore/monitor/vmm/hv/common/hvMSR.c

HVExit
General HV exit path, calls out to
various handlers for exit reasons

vmcore/monitor/vmm/hv/common/hv.c

(VMCS field table in VMW
notation, no named functions)

Tokens naming VMCS fields
used in VMW code and
definitions via preprocessing

vmcore/public/x86vt-vmcs-fields.h

HVVTInitVMCSHostFields
Set initial/static VMCS host fields
to reload from at HV exit

vmcore/monitor/vmm/hv/vt/hv-vt.c

HV_SetHostCR0
Set host VMCS %cr0 register
field to reload at HV exit

vmcore/monitor/vmm/hv/vt/hv-vt.c

HV_SetHostCR4
Set host VMCS %cr4 register
field to reload at HV exit

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVVTInitPostedInterrupts
Initialize posted interrupt state in
VMCS, if enabled.

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVSetVMCSPinCtl
Set asynchronous event ("PIN")
controls.

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVSetVMCSCPUCtl
Set synchronous CPU event
controls.

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVSetVMCS2ndCtl
Set secondary synchronous CPU
event controls.

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVSetVMCSExitCtl Set VM exit behaviors. vmcore/monitor/vmm/hv/vt/hv-vt.c

HVSetVMCSXCPCtl Set exception exiting controls. vmcore/monitor/vmm/hv/vt/hv-vt.c

VMware, Inc. VMware ESXi 8.0

Version 1.0 22

Function Description File

HVSetMSRBitmap

Set bitmap of Model-Specific
Registers used to determine
whether read/write MSR
instructions cause VM exits or
write to CPU state (requiring
context-switching in software).

vmcore/monitor/vmm/hv/vt/hv-vt.c

HV_SetMSRIntercept

Set access VMM interception
(force HV exit) in given MSR
bitmap for given MSR and
access type.

vmcore/monitor/vmm/public/hvPlatform.h

HV_ClearMSRIntercept

Clear access VMM interception
(avoid HV exit) in given MSR
bitmap for given MSR and
access type.

vmcore/monitor/vmm/public/hvPlatform.h

HVSetVMCSEnclsBitmap
Set bitmap for ENCLS-instruction
exiting (see module 4.9: SGX)

vmcore/monitor/vmm/hv/vt/hv-vt.c

HVSetVMCSEnclvBitmap
Set bitmap for ENCLV-instruction
exiting (see module 4.9: SGX)

vmcore/monitor/vmm/hv/vt/hv-vt.c

HV_SetNestedPagingRoot

Sets the VT nested paging root
(VMCS field EPTP) to a given
value. (See module 4.2: VMM
guest memory)

vmcore/monitor/vmm/hv/vt/hv-vt.c

VVT_VMENTER
Effects a VM entry managed by
the current VMCS.

vmcore/monitor/common/hv/vt/vvt.c

4.1.7 Appendix A: Bibliography for the Intel VT References

Document Author / Company Date Notes

Intel® 64 and IA-32 Architectures
Software Developer's Manual
Volume 3C: System Programming
Guide, Part 3

Intel Corporation

www.intel.com

06/30/2022

Specific citations are in the
detail table below. Note:
Intel renumbers resources
over time. These chapters
and the SDM volume
number are correct as of
June 30, 2022.

Chapter name Content

(23) Introduction to Virtual Machine
Extensions

"VMX" / VT overview

(24) Virtual Machine Control
Structures

VMCS definitions

(25) VMX Non-Root Operation Guest operation

(26) VM Entries Transitions from VMM to VM

(27) VM Exits Transitions from VM to VMM

https://cdrdv2.intel.com/v1/dl/getContent/671506
https://cdrdv2.intel.com/v1/dl/getContent/671506
https://cdrdv2.intel.com/v1/dl/getContent/671506
https://cdrdv2.intel.com/v1/dl/getContent/671506

VMware, Inc. VMware ESXi 8.0

Version 1.0 23

(30) VMX Instruction Reference
Instructions for VMCS programming,
VM resume, HV CPU state
manipulation

4.1.8 Appendix B: Navigating HV module code

The code and header files implementing the HV module are used across multiple products
and CPU architectures. Only a subset of the code is of relevance to the TOE. This table
endeavors to simplify reading code and header files by explaining what is included and
excluded from the TOE. Terminology clarifying the above documentation is also provided.

Term or token Meaning Included in TOE?

vmx86_server Set to 1 if building ESX Yes

VMX86_SERVER (CPP token) #defined if building ESX Yes

SERVER_ONLY() Macro contents defined if building ESX Yes

HOSTED_ONLY()
Not relevant to ESX, enclosed contents
omitted

No

vmx86_vmm Set to 1 if building VMM Yes

vmx86_ulm Set to 0 if building VMM No

ULM_ONLY()
Not relevant to ESX, enclosed contents
omitted

No

vmx86_release Set to 1 if building for releases to customers Yes

vmx86_debug Set to 1 if building for debug builds No

vmx86_devel Set to 1 if building for internal developers No

vmx86_vt Set to 1 if building for VT support Yes

vmx86_svm Not relevant to VT support (AMD-specific) No

VCPU_InGuestOperation()
Returns TRUE if the VCPU is running or
emulating the nested guest

Yes

4.2 VMM HV Memory Management (SFR-ENFORCING)

The VMM HV Memory Management (hereafter "guest memory") module implements
management of memory pages accessible to the virtual machine domain (guest OS,
hereafter "VM") while it executes in HV (via module 4.1: VMM Hardware Virtualization) or
emulation (via module 4.5: VMM Instruction Emulation).

VMware, Inc. VMware ESXi 8.0

Version 1.0 24

Intel provides a technology for Second Level Address Translation ("SLAT") known as
Extended Page Tables (hereafter "EPT"). EPT is a hierarchical system of translation via page
tables: 4 kilobyte pages of 512 64-bit Extended Page Table Entries (hereafter "EPTEs")
apiece, from a root known as the Extended Page Table Pointer (hereafter "EPTP") on to
some terminal EPTE. ETPEs also encode access permissions. Intel describes EPT in the
Intel Software Developers Manual, Volume 3C: System Programming Guide, Part 3, Chapter
28 (See 4.2.7 Appendix A below).

The guest memory module manages views of guest physical memory using EPT. When the
VM executes via Intel's VT (see 4.1: VMM Hardware Virtualization), the guest memory
module provides this view of guest physical memory for a given VCPU via an EPTP. The
EPT tree translates between guest Physical Page Numbers (hereafter "PPNs") and host
Machine Page Numbers (hereafter "MPNs") or non-present entries. When in VT, a memory
access will obey the programmed EPT tree and result in either a successful, fast memory
access or an HV exit to VMM.

Because the guest domain can directly access host memory (as provided, constrained and
prescribed by the TOE), this module is SFR-enforcing. The module must provide only the
correct pages of host memory, and guarantee that access is correctly constrained.

The guest memory module programs the EPT tree with pages of memory and permissions.
The guest memory module interfaces with the host memory allocator (see 9.5: "VM Volatile
Memory Virtualization") to acquire the correct page and any constraining page permissions.

VMware, Inc. VMware ESXi 8.0

Version 1.0 25

The memory allocator module may also request that the guest memory module relinquish
access to a page.

The guest memory module, vmKernel memory modules and other virtualization modules use
an intermediate representation of memory known as the "memory bus" (or "BusMem") to
prioritize what type of resource is visible for a given PPN. It is possible, for example, to layer
a virtual device (e.g. SVGA) on top of non-volatile memory, such that an access to a
particular PPN should exit to VMM and be handled by SVGA device code. The BusMem
system denominates pages in BusMem Page Numbers (hereafter "BPNs"). In the
conversion of a PPN to an MPN, the memory bus is traversed.

For efficiency, contiguous, aligned sets of PPNs of size 512 or 512 * 512 with identical
permissions may be promoted to a larger page size. Thus 512 aligned, contiguous 4 kilobyte
pages mapped at level 1 of EPT may be replaced with one 2 megabyte page at level 2 of
EPT, and 512 aligned, contiguous 2 megabyte pages mapped at level 2 of EPT may be
replaced with one 1 gigabyte page at level 3 of EPT. If permissions on a subpage of any
larger (2 megabyte, 1 gigabyte) page are then modified, the larger page is invalidated. Such
optimizations add complexity to the module, but do not violate its security guarantees, as
protections are always enforced conservatively and correctly for every page.

EPT uses Translation Lookaside Buffers (EPT "TLBs" hereafter) in the CPU to ensure high
performance. These caches are tagged with Virtual Process Identifiers (hereafter "VPIDs").
As such, the module must follow cache coherency protocols when unmapping or modifying
mappings in EPTEs. The guest memory module coordinates with the VMM-VMK Entry
module (see 4.8) to ensure proper switching and flushing of EPT TLBs and VPIDs when
switching between VMs.

The HV module (see 4.1: VMM Hardware Virtualization) implements virtualization of
Hardware Virtualization (VHV) via virtualization of Intel's VT technology (VVT). The guest
memory module provides complementary technology to virtualize guest memory via
virtualization of Intel's EPT, implemented as Virtualization of Nested Page Tables (hereafter
VNPT). When a VM uses VVT, its inner hypervisor describes execution of its inner guests via
VT semantics. When a VM uses VVT, its inner hypervisor may use VNPT, describing inner
guest memory via EPT semantics. VNPT converts inner hypervisor description of inner guest
memory to a host-level EPT tree known as a VNPT shadow, for efficient execution. VNPT
shadows are composed of strict subsets of a VM's primary EPT tree, with page protections at
least as restrictive. Thus each VCPU can either run with the VM-global EPT tree or one of its
subsets, a VNPT shadow.

VMware, Inc. VMware ESXi 8.0

Version 1.0 26

The guest memory module also maintains parallel x86 page table trees used to enable fast
emulation of guest memory accesses. These trees, known as the trace tree and no-trace
tree, map views of guest physical memory into VMM. These trees are not SFR-enforcing as
they do not directly expose memory to the guest, but they are noteworthy in support of other
modules (e.g. 4.5: VMM Instruction Emulation).

4.2.1 Security Functionality (SF)

See the table in Section 4.2.2.

4.2.2 Security Functional Requirement (SFR)

Security Function (SF)
Security Function Requirement
(SFR) Rationale

SF6.Protection of the TSF
(FPT)

FPT_VIV_EXT.1.1

The TSF shall maintain a security domain for
the execution of each virtual machine that
protects the virtual machine from interference
and tampering by untrusted subjects or
subjects from outside the scope of the VM.

4.2.3 Provided TSFI

This module has no TSFI as it is an internal module and has no exposure to outside the
TOE.

4.2.4.1 Internal Interfaces of the Module (General execution)

Module Function
Security

Function (s)
SFR(s) Parameters

Return
Value

Rationale

GPhysSetPTE
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

dest - pointer
to PTE to set,

newVal -
value to set in
PTE

None (void
function).

Sets a PTE in a
GPhysTree (EPT tree).

GPhysClearPTE
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

dest - pointer
to PTE to
clear,

pa - physical
address
represented
by this PTE

level - level in
page table
hierarchy at
which this
entry is wired

GPhysPTE -
the previous
value of this
PTE.

Clears a PTE in a
GPhysTree (EPT tree).
Also clears VMM software
mapping ("NPTMap") of
the EPT subtree wired by
the previous PTE.

VMware, Inc. VMware ESXi 8.0

Version 1.0 27

Module Function
Security

Function (s)
SFR(s) Parameters

Return
Value

Rationale

GPhysProtectPPN
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

bpn -
(argument not
used)

ppn - page to
protect

trace -
software
callback
pointer to
apply, if any

flushReq -
description of
flush (level of
PTE, PTE,
count)

flags - new
protection
flags

 None (void
function).

Applies new protections
to the BPN specified, if it
could be translated to a
PPN. Flushes TLBs as
necessary. Effectively,
updates the EPT tree to
reflect new protections for
a page.

GPhys_Validate
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

paddr -
physical
address in
page

errorCode -
page fault
error code
resulting in
validation
attempt

guestAccess
- whether the
fault resulting
in validation
was incurred
while running
the guest

respectTrace
s - whether to
fire software
callbacks for
the page
access

Bool -
whether
validation
succeeded.
If true, a
mapping in
the EPT tree
now exists
for the given
paddr.

Main function to "validate"
(create a new PA (PPN)
=> MPN mapping in the
active EPT tree).
Translates from PA to
PPN to BPN to MPN,
respecting and applying
permissions at all levels.
If all goes well, inserts the
new translation into the
EPT tree. Otherwise,
fails and returns.

Attempts to validate at the
largest size/highest level
applicable (to allow an
invalidated set of small
pages to become a
singular large page
thereafter).

GPhysInvalidateMappi
ngRange

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

startPPN -
first PPN in
range

endPPN - last
PPN in range

None (void
function).

Invalidates all PPNs in
the range at all relevant
levels in the EPT tree.
(Clears mappings for all
PPNs specified)

VMware, Inc. VMware ESXi 8.0

Version 1.0 28

Module Function
Security

Function (s)
SFR(s) Parameters

Return
Value

Rationale

GPhys_InvalidatePag
eList

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

pageList - list
of pages to
invalidate

numEntries –
list length (or
1)

isLargePages
- does the list
represent 4KB
pages or
larger?

None (void
function).

Invalidates a list of pages
but does not flush the
TLB. TLB flushing is the
caller's responsibility.

GPhys_InvalidateBPN
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

bpn - BPN to
invalidate

toLargeFlush
Req - should
this flush be
added to an
ongoing large
flush request
(for later TLB
flush)?

None (void
function).

Invalidates the specified
BPN in the EPT tree but
does not flush TLBs
(allowing more efficient
batching of TLB flushes).

TLB flushing is the caller's
responsibility.

BusMemInvalidateCac
he

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

pageList - list
of pages to
invalidate

req - zap
request
structure
describing
pages and
release

isMPNlist -
zap one entry
or a list?

numEntries –
list length (or
1)

isLargePages
- does the list
represent 4KB
pages or
larger?

None (void
function).

Invalidates list of pages
(calls both
GPhys_InvalidatePageLis
t() and
VNPT_InvalidatePageList
()) and causes VM-wide
TLB flushes by invoking
BusMemZapPageListCC
on all VCPUs.

GPhys_ConvertToLar
geOne

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

ppn - the PPN
to be
converted

bpn - the BPN
expected to be
visible at this
PPN

0 or 1: the
number of
pages
converted to
large.

Converts 512 aligned 4
kilobyte pages with
identical permissions to a
single 2 megabyte
mapping, or fails and
does no harm.

VMware, Inc. VMware ESXi 8.0

Version 1.0 29

Module Function
Security

Function (s)
SFR(s) Parameters

Return
Value

Rationale

GPhys_FlushAllTLBs
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

None
None (void
function).

Synchronously flushes all
TLBs on all VCPUs in the
VM. Slow,
comprehensive.

GPhysOpenLargeFlus
hReq

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

None
None (void
function).

Opens a large flush
request, which will
contain a set of one or
more PPNs to flush from
the TLB. Used to
efficiently batch flushing
of many pages.

GPhys_AddToLargeFl
ushReq

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

flushReq -
request to add
to set

(either one
PPN or "flush
all")

None (void
function).

Adds one PPN (or "flush
all" command) to the
current to-be-flushed set.

GPhys_CloseLargeFl
ushReq

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

None
None (void
function).

Closes a large flush
request.

GPhys_ProcessLarge
FlushReq

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

None
None (void
function).

Processes a large flush
request, flushing either all
PPNs in the set or the
entire TLB, on the current
CPU.

HV_FlushNestedMap
pings

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT
.1.1

None
None (void
function).

Invalidates the EPTP on
the current CPU.

4.2.4.2 Internal Interfaces of the Module (VNPT, for nested guest memory
virtualization)

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

VNPTSetNPTE
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

snpte -
shadow
nested page
table entry to
update

val - value to
set

level - page
table level in
EPT tree

None (void
function).

Sets an EPTE
in an NPT
shadow
(nested EPT
tree). Also
used to clear
entries.

VMware, Inc. VMware ESXi 8.0

Version 1.0 30

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

VNPT_Update
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

startBPN -
first (possibly
only) BPN to
update

action -
description of
update action
(invalidate,
add or remove
software
callback
hooks for
page)

isLargePage
- act on one 4
kilobyte page
or an aligned
region of 512
4 kilobyte
pages (one 2
megabyte
page)?

Bool - whether
a flush is
needed after
the update.

Updates an
existing entry
in a VNPT
shadow, for
either a 4
kilobyte or 2
megabyte
page. Callers
must flush the
TLB in the
relevant ASID
if TRUE is
returned.

VNPT_InvalidatePageList
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

pageList - list
of pages to
invalidate

numEntries –
list length (or
1)

isLargePages
- does the list
represent 4KB
pages or
larger?

None (void
function).

Invalidates a
list of pages in
an NPT
shadow but
does not flush
the TLB. TLB
flushing is the
caller's
responsibility.

VMware, Inc. VMware ESXi 8.0

Version 1.0 31

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

VNPT_HandleNPF
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

la - linear
address being
accessed
when the
nested page
fault was
incurred

paI - input
physical
address: the
physical
address
causing the
fault

flags -
description of
the type of
memory
access (e.g.
read, write,
page table
access)

An x86fault
object pointer,
representing
either a specific
failure, or
successful
validation in the
VNPT shadow
(X86Fault_None
or similar).

Attempts to
handle a
nested page
fault while in
nested guest
execution via
VVT. When
successful,
updates the
VNPT shadow
for the access.

HVFlushAllASIDs
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None
None (void
function).

Invalidates all
VPIDs on the
current CPU.

VVTProcessVPID
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None

Bool - TRUE if
a non-zero
VPID was set or
if the VPID
control was
disabled.

Sets the VPID
field in the
virtual CPU
(based upon
nested VMCS
state), for
future use in
VT execution.

VNPT_FlushPhysical
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1 None
None (void
function).

Flushes all
shadow nested
page table
mappings from
current CPU.

VMware, Inc. VMware ESXi 8.0

Version 1.0 32

4.2.5 Used interfaces of other modules

Module Function Module Description Parameters
Return
Value File

HV_SetNestedPagingRoot
4.1 VMM
Hardware
Virtualization

Sets nested paging root
(EPTP) in VMCS for use in
VT execution.

l4MPN - MPN
corresponding
to EPTP to
populate.

None.
(void
function).

vmcore/mo
nitor/vmm/h
v/vt/hv-
common.h

VmMemPf_GetPFrameMP
N

9.5 VM
volatile
memory
virtualization

Request the MPN backing
the given BPN from the
vmkernel, for memory-
backed BusMem regions.

(Called via 4.8: VMM/VMK
interface)

bpn - BusMem
page to
translate to a
machine page

mpn - pointer
to return the
translated
MPN (or
INVALID_MP
N on failure)

VMKCall
return:
VMK_OK
on
success,
a failure
code
otherwise.

vmkernel/m
em/vmmem
pf.c

VMKCall_GetPFrameMPN
4.8
VMM/VMK
interface

Switch to the vmkernel and
call
VmMemPf_GetPFrameMP
N()

bpn - BusMem
page to
translate to a
machine page

mpn - pointer
to return the
translated
MPN (or
INVALID_MP
N on failure)

VMKCall
return:
VMK_OK
on
success,
a failure
code
otherwise.

vmcore/pub
lic/x86/vmk
ernelVmcor
eFuncs.h

4.2.6 Mapping to the Source Code

Function Description File

GPhysSetPTE
Sets a PTE in a GPhysTree
(EPT tree).

vmcore/monitor/vmm/gphys/common/gphys.c

GPhysClearPTE

Clears a PTE in a GPhysTree
(EPT tree). Also clears VMM
software mapping ("NPTMap")
of the EPT subtree wired by
the previous PTE.

vmcore/monitor/vmm/gphys/common/gphys.c

GPhysProtectPPN

Applies new protections to the
BPN specified, if it could be
translated to a PPN. Flushes
TLBs as necessary.
Effectively, updates the EPT
tree to reflect new protections
for a page.

vmcore/monitor/vmm/gphys/common/gphys.c

VMware, Inc. VMware ESXi 8.0

Version 1.0 33

Function Description File

GPhys_Validate

Main function to "validate"
(create a new PA (PPN) =>
MPN mapping in the active
EPT tree). Translates from PA
to PPN to BPN to MPN,
respecting and applying
permissions at all levels. If all
goes well, inserts the new
translation into the EPT tree.
Otherwise, fails and returns.

Attempts to validate at the
largest size/highest level
applicable (to allow an
invalidated set of small pages
to become a singular large
page thereafter).

vmcore/monitor/vmm/gphys/common/gphys.c

GPhysInvalidateMappingRange

Invalidates all PPNs in the
range at all relevant levels in
the EPT tree. (Clears
mappings for all PPNs
specified)

vmcore/monitor/vmm/gphys/common/gphys.c

GPhys_InvalidatePageList

Invalidates a list of pages but
does not flush the TLB. TLB
flushing is the caller's
responsibility.

vmcore/monitor/vmm/gphys/common/gphys.c

GPhys_InvalidateBPN

Invalidates the specified BPN
in the EPT tree but does not
flush TLBs (allowing more
efficient batching of TLB
flushes).

TLB flushing is the caller's
responsibility.

vmcore/monitor/vmm/gphys/common/gphys.c

BusMemInvalidateCache

Invalidates list of pages (calls
both
GPhys_InvalidatePageList()
and
VNPT_InvalidatePageList())
and causes VM-wide TLB
flushes by invoking
BusMemZapPageListCC on
all VCPUs.

vmcore/monitor/vmm/main/busmem.c

GPhys_ConvertToLargeOne

Converts 512 aligned 4
kilobyte pages with identical
permissions to a single 2
megabyte mapping, or fails
and does no harm.

vmcore/monitor/vmm/gphys/common/gphys.c

GPhys_FlushAllTLBs
Synchronously flushes all
TLBs on all VCPUs in the VM.
Slow, comprehensive.

vmcore/monitor/vmm/gphys/common/gphys.c

VMware, Inc. VMware ESXi 8.0

Version 1.0 34

Function Description File

GPhysOpenLargeFlushReq

Opens a large flush request,
which will contain a set of one
or more PPNs to flush from
the TLB. Used to efficiently
batch flushing of many pages.

vmcore/monitor/vmm/gphys/common/gphys.c

GPhys_AddToLargeFlushReq
Adds one PPN (or "flush all"
command) to the current to-
be-flushed set.

vmcore/monitor/vmm/gphys/common/gphys.c

GPhys_CloseLargeFlushReq Closes a large flush request. vmcore/monitor/vmm/gphys/common/gphys.c

GPhys_ProcessLargeFlushReq

Processes a large flush
request, flushing either all
PPNs in the set or the entire
TLB, on the current CPU.

vmcore/monitor/vmm/gphys/common/gphys.c

HV_FlushNestedMappings
Invalidates the EPTP on the
current CPU.

vmcore/monitor/vmm/hv/vt/hv-vt.c

VNPTSetNPTE
Sets an EPTE in an NPT
shadow (nested EPT tree).
Also used to clear entries.

vmcore/monitor/vmm/hv/common/vnpt-
common.h

VNPT_Update

Updates an existing entry in a
VNPT shadow, for either a 4
kilobyte or 2 megabyte page.
Callers must flush the TLB in
the relevant ASID if TRUE is
returned.

vmcore/monitor/vmm/hv/common/vnpt-
common.h

VNPT_InvalidatePageList

Invalidates a list of pages in
an NPT shadow but does not
flush the TLB. TLB flushing is
the caller's responsibility.

vmcore/monitor/vmm/hv/common/vnpt-
common.h

VNPT_HandleNPF

Attempts to handle a nested
page fault while in nested
guest execution via VVT.
When successful, updates the
VNPT shadow for the access.

vmcore/monitor/vmm/hv/common/vnpt-
common.h

HVFlushAllASIDs
Invalidates all VPIDs on the
current CPU.

vmcore/monitor/vmm/hv/vt/hv-vt.c

VVTProcessVPID

Sets the VPID field in the
virtual CPU (based upon
nested VMCS state), for future
use in VT execution.

vmcore/monitor/common/hv/vt/vvt.c

VNPT_FlushPhysical
Flushes all shadow nested
page table mappings from
current CPU.

vmcore/monitor/vmm/hv/common/vnpt-
common.h

VMware, Inc. VMware ESXi 8.0

Version 1.0 35

4.2.7 Appendix A: Bibliography for Intel Documentation References (EPT)

Document Author / Company Date Notes

Intel® 64 and IA-32 Architectures Software
Developer's Manual Volume 3C: System
Programming Guide, Part 3

Intel Corporation

www.intel.com

06/30/2022

Specific
citations are
in the detail
table below.
Note: Intel
renumbers
resources
over time.
These
chapters
and the
SDM volume
number are
correct as of
June 30,
2022.

Chapter name Content

(28) VMX Support for Address Translation
Explanation of EPT and related
technologies

4.2.7 Appendix B: Navigating Guest Memory Module Code

The code and header files implementing the module are used across multiple products and
CPU architectures. Only a subset of the code is of relevance to the TOE. This table
endeavors to simplify reading code and header files by explaining what is included and
excluded from the TOE. Terminology clarifying the above documentation is also provided.

Term or token Meaning Included in TOE?

vmx86_server Set to 1 if building ESX Yes

VMX86_SERVER (CPP token) #defined if building ESX Yes

SERVER_ONLY() Macro contents defined if building ESX Yes

HOSTED_ONLY() Not relevant to ESX, enclosed contents omitted No

vmx86_vmm Set to 1 if building VMM Yes

vmx86_ulm Set to 0 if building VMM No

ULM_ONLY() Not relevant to ESX, enclosed contents omitted No

vmx86_release Set to 1 if building for releases to customers Yes

vmx86_debug Set to 1 if building for debug builds No

vmx86_devel Set to 1 if building for internal developers No

vmx86_vt Set to 1 if building for VT support Yes

https://cdrdv2.intel.com/v1/dl/getContent/671506
https://cdrdv2.intel.com/v1/dl/getContent/671506
https://cdrdv2.intel.com/v1/dl/getContent/671506
http://www.intel.com/

VMware, Inc. VMware ESXi 8.0

Version 1.0 36

Term or token Meaning Included in TOE?

vmx86_svm Not relevant to VT support (AMD-specific) No

vmx86_ept Set to 1 if building for VT support Yes

vmx86_npt Set to 0 if building for VT support (AMD-specific) No

VCPU_InGuestOperation()
Returns TRUE if the VCPU is running or emulating
the nested guest

Yes

GPhys_HWMMUTreeInVMK()
FALSE for the TOE. Ignore any code in which this
must be TRUE.

No

GPHYS_TREE_HWMMU
The 'GPhysTree' in code relevant to EPT. Other
trees are used for supporting emulation.

Yes

4.3 VMM Host Interrupts IDT, APIC, MAP (SFR-ENFORCING)

The VMM Host Interrupts IDT APIC Map module (hereafter, "interrupt optimization module")
implements optimized interrupt handling and inter-thread communication within a virtual
machine. The module implements direct control and use of CPU interrupt controller hardware
in a manner cooperative with the vmKernel (which normally controls CPU interrupt controller
hardware).

A VM is comprised of virtual CPUs, each of which is implemented by a thread (hereafter a
"world"). The Virtual Machine Monitor ("VMM") is a kernel-mode program which implements
execution of a VM. A VM contains one VMM world per virtual CPU, and often the VMM worlds
within a VM run concurrently, on different host PCPUs.

When the vmKernel's CPU scheduler (see 8.1: CPU Dispatcher) runs a VMM world, that VMM
world takes control of the Interrupt Descriptor Table Register (hereafter "IDTR") in the CPU,
causing subsequent interrupt activity to run VMM interrupt handler code instead of vmKernel
interrupt handler code. When a VMM world is run, a thread-local variable is updated to contain
the APIC Identifier of the physical CPU running the world. With direct control of the IDTR and
awareness of the APIC Identifiers of each VMM world, VMM worlds within a VM can directly
send Inter-Processor Interrupts (hereafter "IPIs") to one another, and VMM handler code will
execute in response. When a VMM world discontinues running, it relinquishes control of the
IDTR to the vmKernel.

Because the vmKernel and the VMM cooperatively share use of the IDTR and the interrupt
controllers of physical CPUs, the two must implement a careful protocol to avoid non-
interference. Hence, the interrupt optimization module is SFR-enforcing because it must
carefully avoid allowing VMM (which runs proximate to the guest domain) instances from
interfering with one another or other host software.

IPIs, as with all interrupts on x86 CPUs, are targeted via 8-bit vector numbers. The vmKernel
and VMM dedicate specific vectors to specific purposes. Two vectors are reserved for VMM
IPI use: the posted interrupt vector, and the general monitor IPI vector. The exact vectors for
these purposes must be carefully communicated by the vmKernel to VMM and respected by
both pieces of software.

VMware, Inc. VMware ESXi 8.0

Version 1.0 37

4.3.1 Security Functionality (SF)

See the table in Section 4.3.2.

4.3.2 Security Functional Requirement (SFR)

Security Function (SF)
Security Function

Requirement (SFR)
Rationale

SF6.Protection of the TSF (FPT) FPT_VIV_EXT.1.1

The TSF shall maintain a security domain for the
execution of each virtual machine that protects the
virtual machine from interference and tampering by
untrusted subjects or subjects from outside the
scope of the VM.

4.3.3 Provided TSFI

This module has no TSFI as it is an internal module and has no exposure to outside the
TOE.

4.3.4.1 Internal Interfaces of the Module

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

ApicMap_InterruptVcpuid

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

v - the
Vcpuid of the
VCPU to
interrupt

ipiVec - the
Inter-
Processor
Interrupt
Vector to use

None (void
function).

Interrupts a
specified VCPU
within this VM
using the vector
given.

Platform_GetMonitorIPIVe
ctor

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

None An interrupt vector

Gets the IPI
vector reserved
by the platform
(vmKernel) for
general monitor
use.

Platform_GetHVIPIVector
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

None An interrupt vector

Gets the IPI
vector reserved
by the platform
(vmKernel) for
posted
interrupt/HV use.

VMKCall_VMKGetIntInfo
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

inData -
return
pointer for
kernel
interrupt
information

A VMKCall return
status (VMK_OK on
success).

Acquires
interrupt
information from
the vmKernel,
including IPI
vectors for the
monitor to use.

VMware, Inc. VMware ESXi 8.0

Version 1.0 38

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

IDT_NullGate
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

regs -
exception
frame
provided
when
hardware
raises an
interrupt
(including
IPIs).

None (void
function).

Monitor handler
quickly called
when an IPI is
sent to a CPU
running a VMM
world.

WorldSaveApicMap

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

w - world
that is
transitioning
from running
to not
running

None (void
function).

Unsets apicMap
variable for this
VMM world, as it
is no longer
running and thus
cannot receive
IPIs.

WorldRestoreApicMap
SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

w - world
that is
transitioning
from running
to not
running

None (void
function).

Sets apicMap
variable to the
physical CPU's
APIC Id for this
VMM world, as it
about to run and
can thus receive
IPIs.

WorldArchSharedAreaVcp
uInit

SF6.Protectio
n of the TSF
(FPT)

FPT_VIV_EXT.1.
1

world - VMM
world being
initialized.

VMK_ReturnStatus
- VMK_OK on
successful
initialization, or an
error otherwise.

Initializes pointer
to world's
apicMap variable
for later
population when
the VMM world is
run or finishes
running.

4.3.4 Used interfaces of other modules

None.

4.3.5 Mapping to the Source Code

Function Description File

ApicMap_InterruptVcpuid

Interrupts a specified
VCPU within this VM using
the vector given.

vmcore/monitor/vmm/main/apicmap.c

Platform_GetMonitorIPIVector

Gets the IPI vector
reserved by the platform
(vmKernel) for general
monitor use.

vmcore/monitor/common/public/platform_vmk.h

VMware, Inc. VMware ESXi 8.0

Version 1.0 39

Function Description File

Platform_GetHVIPIVector

Gets the IPI vector
reserved by the platform
(vmKernel) for posted
interrupt/HV use.

vmcore/monitor/common/public/platform_vmk.h

VMKCall_VMKGetIntInfo

Acquires interrupt
information from the
vmKernel, including IPI
vectors for the monitor to
use.

vmcore/public/x86/vmKernelVmcoreFuncs.h

IDT_NullGate

Monitor handler quickly
called when an IPI is sent
to a CPU running a VMM
world.

vmcore/monitor/vmm/cpu/idt.c

WorldSaveApicMap

Unsets apicMap variable
for this VMM world, as it is
no longer running and thus
cannot receive IPIs.

vmKernel/main/x86/world_int_arch.h

WorldRestoreApicMap

Sets apicMap variable to
the physical CPU's APIC Id
for this VMM world, as it
about to run and can thus
receive IPIs.

vmKernel/main/x86/world_int_arch.h

WorldArchSharedAreaVcpuInit

Initializes pointer to world's
apicMap variable for later
population when the VMM
world is run or finishes
running.

vmKernel/main/x86/world.c

4.3.6 Appendix A: Navigating Interrupt Optimization Module Code

The code and header files implementing the module are used across multiple products and
CPU architectures. Only a subset of the code is of relevance to the TOE. This table
endeavors to simplify reading code and header files by explaining what is included and
excluded from the TOE. Terminology clarifying the above documentation is also provided.

Term or token Meaning Included in TOE?

vmx86_server Set to 1 if building ESX Yes

VMX86_SERVER (CPP token) #defined if building ESX Yes

SERVER_ONLY() Macro contents defined if building ESX Yes

HOSTED_ONLY() Not relevant to ESX, enclosed contents omitted No

vmx86_vmm Set to 1 if building VMM Yes

vmx86_ulm Set to 0 if building VMM No

VMware, Inc. VMware ESXi 8.0

Version 1.0 40

Term or token Meaning Included in TOE?

ULM_ONLY() Not relevant to ESX, enclosed contents omitted No

vmx86_release Set to 1 if building for releases to customers Yes

vmx86_debug Set to 1 if building for debug builds No

vmx86_devel Set to 1 if building for internal developers No

VMM_BOOTSTRAP Set to 0 for general VMM run-time No

Files and directories containing
arm64

Not relevant to Intel/x86 product No

4.4 VMM Hot Path (SFR-NON-INTERFERING)

The Virtual Machine Monitor (hereafter "VMM") in the TOE executes the guest domain
(hereafter "VM") using Intel's VT via the VMM Hardware Virtualization module (see 4.2: VMM
Hardware Virtualization, hereafter the "HV module"). The HV module tends to run in a loop,
entering guest execution via an "HV resume" followed by the guest execution exiting and
returning to VMM, in the HV module's "HV exit" code path. The VMM Hot Path module
(hereafter "Hot Path module") attempts to optimize handling of HV exit reasons and
qualifications and quick return to HV resume.

The Hot Path module quickly checks for various common and easily-handled exit causes.
For example, if a guest operating writes to the Virtual CPU's interrupt controller (the
Advanced Programmable Interrupt Controller, known as the APIC), the exit qualification
describes this write, and the hot path module calls virtual APIC update code to quickly
update APIC state in the virtual CPU, then returns such that the HV module can HV resume.
If the Hot Path module fails to quickly handle an HV exit (whether because it was an
uncommon exit, or because handling failed due to some uncommon circumstance), the Hot
Path module calls what is known as the "slow path", relying upon software emulation (see
4.5: VMM Instruction Emulation, hereafter "Instruction Emulation module") to handle the exit
and return.

The Hot Path module implements separate functionality for handling HV exits while in nested
guest execution (see 4.2 for an explanation of nested virtualization). Special cases for nested
guest execution and its optimization necessitate different handling, both for functional
correctness and performance reasons. Some common code is used in handlers for both the
non-nested and nested guest fast paths for HV exit handling.

The Hot Path module uses various portions of VMM in support of its fast handling of HV
exits, as well as the instruction emulation module.

Because the Hot Path module does not act upon state relevant to SFR enforcement and
manipulates software state in service of handling HV exits, it is SFR-NON-INTERFERING. It
is essentially glue between modules within VMM, optimized for performance.

VMware, Inc. VMware ESXi 8.0

Version 1.0 41

4.4.1 Mapping to the Source Code

Function Description File

HVTryFastExit

Attempts to quickly handle an HV exit. If
the exit can be quickly handled, finishes
with HV Resume. If the exit cannot be
handled, returns, such that the caller
(HVExit) can call the slow path.

vmcore/monitor/vmm/hv/vt/hv-common.h

HVTryFastNestedExit

Attempts to quickly handle an HV exit
raised while running a nested guest. If
the exit can be quickly handled, finishes
with HV Resume. If the exit cannot be
handled, returns, such that the caller
(HVExit) can call the slow path.

vmcore/monitor/vmm/hv/vt/hv-common.h

4.5 VMM Instruction Emulation (SFR-NON-INTERFERING)

The Virtual Machine Monitor (hereafter "VMM") implements Virtual CPUs to run Virtual
Machines. Virtual CPUs are implemented in accordance with Intel specifications for CPUs.
Execution of a Virtual Machine is performed via the VMM Hardware Virtualization module
(see 4.2, hereafter "HV module") utilizing Intel's VT. HV implements much of a correct and
fast virtual CPU. Occasionally, VMM must emulate an instruction (as HV might otherwise
infinitely loop, blocked by some attribute imposed upon VM execution by VMM). For
example, if VMM requests a software callback before VM access to a particular page of
memory, Intel's VT will exit to VMM (via an HV exit), and re-entry (via an HV resume) would
simply result in another, identical exit. The Virtual CPU would not move forward. To unblock
such instances, VMM contains an instruction emulation engine.

The VMM Instruction Emulation module (hereafter "Emulation module") implements the
capability to emulate any valid instruction in any valid situation with any valid arguments,
within a virtual CPU. Instruction emulation is slow, as it is a software implementation of all
steps a CPU would perform to run an instruction (including complex instructions), and
emulation also causes all correct results, effects and side-effects of the instruction's effective
execution. Emulating a single instruction might take 1000 times as long in software emulation
as in HV execution. The Emulation module implements decoding of an instruction including
all instruction prefixes, execution of the instruction including emulation of any relevant guest
register or memory accesses, potential faulting if execution dictates a fault be raised and
possible indirect software side-effects.

To decode an instruction, the Emulation module contains an x86 instruction decoder aware
of all possible instructions and their encodings and meanings. The Emulation module
contains code called the interpreter which can "interpret" a single instruction, once decoded.
The interpreter implements emulation of every valid instruction encoding. Memory accessed
by instructions is handled by accesses to the VMM-mapped view of guest memory provided
4.2: VMM HV Memory Management. Software state of the virtual CPU, from general-purpose
to special-purpose registers may be read or updated by the interpreter. The interpreter may
call out to supporting functionality related to, for example, privileged instruction state (i.e.,
instructions which run in the more privileged guest kernel mode, as opposed to guest user

VMware, Inc. VMware ESXi 8.0

Version 1.0 42

mode). As many instructions use different parts of the virtual CPU, various different functions
provided by different code files may be called.

The Emulation module also contains a fast emulation engine known as HVSimulate.
HVSimulate is a system to more quickly emulate one or more instructions (up to a maximum
of twelve) from a small lexicon of simple and well-defined instructions. HVSimulate creates
and manages a cache of instructions at which HV exits repeatedly occur, and at the third
occurrence of such an exit, HVSimulate creates a "translation" of the instruction. This
translation allows the Emulation module to amortize the cost of decoding an instruction, and
to create an executable equivalent portion of emulation code to re-use when such an
instruction is encountered again. HVSimulate then potentially builds chains of consecutive
instructions (from its limited lexicon, with various simplifying constraints) to create larger
translations. The HVSimulate engine within the Emulation module is the entrypoint to the
Emulation module from the VMM Fast Path module. If HVSimulate lacks a translation (as the
instruction may never have been seen before, or it is invalid for translation), it falls back to
the interpreter, which is guaranteed to succeed in instruction emulation.

The Emulation module operates purely on software, virtual CPU state within the VMM
program, to ensure forward progress of the virtual CPU as part of "slow path" operation. As
such, it is SFR-NON-INTERFERING.

4.5.1 Mapping to the Source Code

Function Description File

HVSim_Try

Attempts to emulate one or
more instructions efficiently
instructions using HVSimulate.
Run-time entrypoint to
HVSimulate.

vmcore/monitor/common/hv/hvsimulate.c

Interp_Step

Emulates one guest instruction,
delivering any resulting faults to
the guest. Run-time entrypoint
to the interpreter.

vmcore/monitor/common/cpu/x86/interp.c

Decoder_DecodeAtVCPU

Decodes the next guest
instruction at the VCPU's
current program counter. Run-
time entrypoint to the interpreter
for emulation of an instruction.

vmcore/monitor/common/cpu/x86/decoderMonitor.c

4.5.2 Appendix A: Published Technical Research Bibliography

Document Author / Company Date Notes

Software Techniques for
Avoiding Hardware
Virtualization Exits

Ole Agesen, Jim Mattson,
Radu Rugina, Jeffrey
Sheldon, VMM team,
VMware

2012 USENIX
Annual Technical
Conference, June

Describes the techniques used in
HVSimulate for workloads of relevance
in the year 2012. Workloads have
changed but much of the paper is still
accurate and applicable to HVSimulate
code in the TOE.

https://www.usenix.org/system/files/conference/atc12/atc12-final158.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final158.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final158.pdf

VMware, Inc. VMware ESXi 8.0

Version 1.0 43

4.6 VMM Guest Interrupts (SFR-NON-INTERFERING)

Virtual guest interrupts (hereafter "virtual interrupts") are a software construct implemented in
virtual hardware. The Virtual Machine Monitor (hereafter "VMM") implements virtual interrupts
in the VMM Guest Interrupt module (hereafter "Interrupt module"). A virtual machine
(hereafter "VM") uses a virtual interrupt controller (hereafter "virtual APIC" or "VAPIC") to
program interrupt behavior in a virtual CPU. The Interrupt module implements the virtual
interrupt controller interface, its behavior, and the delivery of interrupts to the VM.

Virtual interrupts are asynchronous events which alter execution within a VM's software
under various conditions. A virtual device, for example, may raise a virtual interrupt for
delivery. One VCPU may request, via the virtual interrupt, an Inter-Processor Interrupt
(hereafter "IPI") on another VCPU within the same VM. Regardless of the interrupt source,
the Interrupt module implements VAPIC as well as interrupt delivery to the VM.

When entering VT execution (see 4.2: VMM Hardware Virtualization, hereafter "HV module"),
the VMCS contains an interrupt state for the VCPU. If the interrupt state encodes that an
interrupt is to be raised, VT will accordingly alter VM execution, such that the VCPU
appropriately reacts to the interrupt and can handle it. The VM's software likely then interacts
with the CPU and APIC to acknowledge, handle and end handling of the interrupt. The HV
module also allows for an optimized form of external interrupt injection without the need to
exit from VT execution, via "posted interrupts". The Interrupt module relies upon the HV
module for this functionality.

All virtual interrupt controller state, all virtual devices capable of raising virtual interrupts and
all CPU functionality related to virtual interrupts is VM-local, software-implemented and self-
contained within a VMM instance. As such, the Interrupt module is SFR-NON-
INTERFERING.

4.6.1 Mapping to the Source Code

Function Description File

APICSendInterrupt
Cause a virtual interrupt to be delivered to the
a specified Virtual CPU.

vmcore/monitor/common/intr/x86/apic.c

APIC_PostIntr

Delivers a virtual interrupt to a remote Virtual
CPU using posted interrupts (such that the
remote VCPU may not exit VT at all to
receive this interrupt).

vmcore/public/x86/apic_shared.h

4.7 VMM Timekeeping (SFR-NON-INTERFERING)

The perception of time is important in operating system and application software, whether
run on a physical machine or in a virtual machine. While physical CPUs and platforms
implement rigid, precise timekeeping, virtual CPUs and platforms run with additional

VMware, Inc. VMware ESXi 8.0

Version 1.0 44

overhead, due to both virtualization overheads and time-shared scheduling. Operating
systems and application software nonetheless have requirements and expectations,
regardless of whether run physically or virtually.

The VMM Timekeeping module (hereafter "Timekeeping module") accommodates the time-
perception needs of software within a VM. VM software largely perceives time via reads of
the CPU cycle clock (using the RDTSC instruction or variants thereof) and by the VM's
interaction with virtual timer hardware.

A VM's cycle clock runs at a constant rate based upon the CPU clock rate evident to the VM
at the time it powered on, based upon the underlying physical CPU's clock rate. Thereafter,
even if the VM migrates to another host with a different physical CPU clock rate, the VM will
maintain the perception of the original clock rating. This requires scaling of reads of the TSC,
which the Timekeeping module must provide.

The virtual CPU cycle clock must also be monotonic across all VCPUs within a VM:
successive reads must always yield increasing values. The Timekeeping module must
provide this.

Ideally, virtualization overheads related to timekeeping should be minimized, for
performance. Thus the Timekeeping module endeavors to avoid overheads when the VM
reads the VCPU's cycle clock, by use of VT controls to automatically scale or offset RDTSC
responses without incurring an HV exit. (For VT control and HV exit discussion, see 4.1:
VMM Hardware Virtualization).

Operating system software programs hardware timers to fire either periodically or at fixed
times in the future. Virtual hardware implementing such timers must overcome additional
challenges as compared to a physical host, because virtualization incurs additional
overheads and because it is possible that a timer for a VM would fire while the VM is not
scheduled by the host operating system. It is the Timekeeping module's responsibility to
mitigate virtualization overheads and to endeavor to cause virtual timer interrupts to fire with
approximately the accuracy expected on physical hosts.

Virtual hardware which indirectly relies upon timers must also behave coherently with overtly
VM-visible timers.

To satisfy a need for coherent timers and timer-based operations, both visible to the VM
directly via virtual hardware timer devices and indirectly via other means, the Timekeeping
module implements a system called TimeTracker. This system provides a virtual clock
source and a notion of "apparent time" to the VM. Various clients draw upon this same clock
source.

Because virtual time is entirely confined to an individual VM and not exposed to other VMs or
host software, the Timekeeping module is SFR-NON-INTERFERING.

VMware, Inc. VMware ESXi 8.0

Version 1.0 45

4.7.1 Mapping to the Source Code

Function Description File

TimeTracker_ApparentTime

Calculates and returns a
current "apparent time" in
units of CPU cycles. Used
by various devices and
other portions of
TimeTracker.

vmcore/monitor/common/main/x86/timeTracker.c

4.8 [vmKernel] VMM-VMK (SFR- ENFORCING)

The VMM-VMK Entry module manages run-time edges between execution of one thread of
the Virtual Machine Monitor (hereafter "VMM") and the vmKernel. Two types of switches are
managed: the start and end of run of a VMM thread (hereafter "VMM world" in VMware
nomenclature), and the switch within a VMM world between the vmKernel context and the
VMM context.

The vmKernel's CPU dispatcher (see 8.1: CPU dispatcher) causes worlds to run. When a
world is run or finishes running, a context switch is affected (hereafter, "world switch")
between the previously-running world and the next world to run. World switching saves CPU
state of the previous world into memory and then loads state from memory to the CPU for the
next world. For performance and correctness, VMM worlds contain specialized state which
must be switched in addition to regular world-switch. The VMM-VMK Entry module
implements this extra world switching for VMM worlds. Not only is some state saved and
loaded, but some state is also flushed. Some of this switched state is relevant to SFR-
enforcement.

Within a VMM world, two contexts exist: the vmKernel context and the VMM context. The
VMM context takes nearly full control of the CPU and cooperatively shares the CPU with the
vmKernel context. The VMM context enters the vmKernel context by affecting a specialized
form of call (hereafter "VMKCall"). The VMM is re-entered from the vmKernel when a
VMKCall returns. The VMM-VMK Entry module implements VMKCalls and returns from
VMKCalls.

The VMM-VMK Entry module optimizes performance by minimizing the frequency and timing
of some necessary operations. World switches are far less common than VMKCalls and
VMKCalls are less common than HV Exits (see 4.1: VMM Hardware Virtualization). Many
operations must be performed before leaving the VMM context or before world-switching to
another world. Such operations can potentially be deferred to less common code paths (e.g.
VMKCall, world switch).

Intel CPUs implement some functionality by use of Model-Specific Registers (hereafter
"MSRs"). Some MSRs are benign, regardless of value, in some contexts. For example, in
kernel-level software, the MSRs related to user-level system call handling are not relevant
and can contain any valid value. Only when the CPU may run user-level software is it
important to ensure that such MSRs contain appropriate values. To optimize VMM
performance (recall that VMM is a kernel-level program), the VM is sometimes allowed
read/write access to such MSRs, and the MSR values stay loaded into the CPU until world-

VMware, Inc. VMware ESXi 8.0

Version 1.0 46

switch, at which time appropriate values are loaded. This functionality is managed by the
MonMSR portion of the module.

Intel CPUs also contain special state related to virtualization, which is only relevant while
running VMM worlds. As such, non-VMM worlds do not need to flush or reload this state - it
is benign during execution of non-VMM worlds. For performance reasons, some
virtualization-related CPU state is not reload or flushed until a new VMM world runs on a
CPU. In VMware nomenclature, a CPU is considered "tainted" if the last VMM world to run on
the CPU is not the current VMM world. The VMM-VMK Entry module reloads and/or flushes
relevant CPU resources before their use by a new VMM world, if the CPU is tainted. (Note
that if a CPU runs a VMM world, followed by a non-VMM world, followed by the initial VMM
world again, no tainting occurs and there is no need for reloading/flushing).

Because the benign CPU state is loaded while running VMM or other host software, the
VMM-VMK Entry module is SFR-Enforcing. The module is responsible for guaranteeing that
such CPU state is benign, and that reloads and/or flushes occur to shield other software in
the TOE from interference.

The VMM-VMK Entry module indirectly facilitates calls from VMM to the VMX. The VMM
contains a mechanism called a "UserCall" which causes the VMKCall
"VMKCall_SwitchToVCPU" which in turn requests that the vmkernel world-switch to a VMX
world within the program.

4.8.1 Security Functionality (SF)

See the table in Section 4.8.2.

4.8.2 Security Functional Requirement (SFR)

Security
Function (SF)

Security Function
Requirement (SFR) Rationale

SF6.Protection of
the TSF (FPT)

FPT_VIV_EXT.1.1
The TSF shall maintain a security domain for the execution of each virtual
machine that protects the virtual machine from interference and tampering
by untrusted subjects or subjects from outside the scope of the VM.

4.8.3 Provided TSFI

This module has no TSFI as it is an internal module and has no exposure to outside the
TOE.

VMware, Inc. VMware ESXi 8.0

Version 1.0 47

4.8.4.1 Internal Interfaces of the Module (World-Switch: Model-Specific
Registers)

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

MonMSR_Init
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1 None
None (void
function).

Initializes
switchedMSR
s values to be
used during
world switch.
Loads initial
monitor MSR
values.

MonMSRInitSwitchedMSRs
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1 None
None (void
function).

Initializes
switchedMSR
s values to be
used during
world switch.

MonMSR_SaveHostLoadMonito
rState

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1 None
None (void
function).

Loads initial
monitor MSR
values.

MonMSR_LoadMonitorState
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1 None
None (void
function).

Loads initial
monitor MSR
values.

MonMSR_LoadMonitorMSR
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

msr - the
model-
specific
register to
write into

val - the
value to write

None (void
function).

Loads one
monitor MSR
value (if not
masked).

MonMSRLoadMSR
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

msr - the
model-
specific
register to
load

loadMask -
mask
determining
whether a
CPU load
should be
affected for
MSRs.

val - the
value to write

None (void
function).

Loads one
monitor MSR
value (if not
masked).

VMware, Inc. VMware ESXi 8.0

Version 1.0 48

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

MonMSR_SetMSRUnused
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

msr - the
model-
specific
register to
mark as
unused

None (void
function).

Marks an
MSR as not
used by the
monitor (such
that the
monitor
considers any
value benign
and world
switch will not
reload
monitor
values for this
MSR).

MonMSR_SetMSR
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

msr - the
model-
specific
register to set

newVal - the
monitor value
to set in the
MSR

flags - flags
related to
switching of
the MSR

None (void
function).

Marks an
MSR as used
by the
monitor,
setting its
value and
flags related
to switching.
If the value or
flags have
changed or if
the flags
specify that
the MSR is
not
shadowed, its
value is also
loaded.

MonMSR_UpdateMSR
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

msr - the
model-
specific
register to set

newVal - the
(new) monitor
value to set
in the MSR

None (void
function).

The value of
the specified
monitor-used
MSR is
updated (but
flags are left
unchanged).
If the existing
flags specify
that the MSR
is in use, the
new value is
loaded.

WorldSaveFastMSRs
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

save - world
being saved
(transitioning
from running
to not
running)

None (void
function).

Saves
monitor MSRs
according to
flags.

VMware, Inc. VMware ESXi 8.0

Version 1.0 49

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

WorldRestoreFastMSRs
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1

restore -
world being
restored
(transitioning
from not
running to
running)

None (void
function).

Loads monitor
MSRs
according to
flags.

WorldArchSharedAreaVcpuInit
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.1.1
world - VMM
world being
initialized.

VMK_ReturnS
tatus -
VMK_OK on
successful
initialization, or
an error
otherwise.

Initializes
pointer to
world's
switchedMSR
variable for
later use
during world
switch

4.8.4.2 Internal Interfaces of the Module (World-Switch: VT State)

Module Function
Security

Function(s)
SFR(s) Parameters

Return
Value

Rationale

WorldSaveControlRegisters
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

save - world
being saved
(transitioning
from running
to not
running)

None
(void
function).

Saves CPU
control
registers and
"saves" VT
state (flushes
any active
VMCS).

WorldSaveVTState
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1
world -
world being
saved.

None
(void
function).

"Saves" VT
state (flushes
any active
VMCS).

WorldRestoreControlRegisters
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

restore -
world being
restored
(transitioning
from not
running to
running)

None
(void
function).

Restores CPU
control
registers and
restores VT
state.

WorldRestoreVTState
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1
world -
world being
restored.

None
(void
function).

Restores VT
state (loads any
active VMCS).

World_ArchExit
SF6.Protection
of the TSF
(FPT)

FPT_VIV_EXT.1.1

w - world
that is
transitioning
from running
to not
running

None
(void
function).

"Saves" VT
state (flushes
any active
VMCS) one
final time
before the
world exits
permanently.

VMware, Inc. VMware ESXi 8.0

Version 1.0 50

4.8.4.3 Internal Interfaces of the Module (VMKCall: State Flushing)

Module Function
Security

Function(s)
SFR(s) Parameters Return Value Rationale

VMKCallWork
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.
1.1

fnNum -
function
number
specifying
which
VMKCall to
execute in
the vmKernel
context

args - a
pointer to
arguments to
the VMKCall

VMK_ReturnStat
us - a return
status for a
VMKCall.
Generally
VMK_OK on
success and a
different error
value on failure.

Switches from
the VMM
context to the
vmKernel
context to
request the
specified call.

SwitchRootAndBackTo
vmKernel

SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.
1.1

fnNum -
function
number
specifying
which
VMKCall to
execute in
the vmKernel
context

args - a
pointer to
arguments to
the VMKCall

eflags - CPU
flags register
value in VMM

VMK_ReturnStat
us - a return
status for a
VMKCall.
Generally
VMK_OK on
success and a
different error
value on failure.

Inner function
that switches
from the VMM
context to the
vmKernel
context to
request the
specified call.
May never
return, and may
also return
running on a
new CPU (with
'pcpuTainted'
set).

HV_EnterMonitor
SF6.Protecti
on of the
TSF (FPT)

FPT_VIV_EXT.
1.1

pcpuTainted
- is the
current CPU
tainted (i.e.
this VMM
world was not
the last world
to run on the
CPU, and
flushing is
needed)?

None (void
function).

Called upon re-
entry to the
monitor to
restore HV state
of relevance.If
pcpuTainted is
set, affects
flushes of the
TLB for VNPT,
EPTP and all
ASIDs (see 4.2:
VMM HV
Memory
Management).

VMware, Inc. VMware ESXi 8.0

Version 1.0 51

4.8.5 Used interfaces of other modules

Module Function Module Description Parameters
Return
Value

File

HV_FlushNestedMa
ppings

4.2: VMM
HV
Memory
Manageme
nt

Invalidates
the EPTP on
the current
CPU.

None
None
(void
function).

vmcore/monitor/vmm/hv/vt/hv-
vt.c

VNPT_FlushPhysic
al

4.2: VMM
HV
Memory
Manageme
nt

Flushes all
shadow
nested page
table
mappings
from current
CPU.

None
None
(void
function).

vmcore/monitor/vmm/hv/commo
n/vnpt-common.h

HVFlushAllASIDs

4.2: VMM
HV
Memory
Manageme
nt

Invalidates
all VPIDs on
the current
CPU.

None
None
(void
function).

vmcore/monitor/vmm/hv/vt/hv-
vt.c

None.

4.8.6 Mapping to the Source Code

Function Description File

MonMSR_Init

Initializes
switchedMSRs
values to be
used during
world switch.
Loads initial
monitor MSR
values.

vmcore/monitor/vmm/main/monMSR.c

MonMSRInitSwitchedMSRs

Initializes
switchedMSRs
values to be
used during
world switch.

vmcore/monitor/vmm/main/monMSR.c

MonMSR_SaveHostLoadMonitorState
Loads initial
monitor MSR
values.

vmcore/monitor/vmm/main/monMSR.c

MonMSR_LoadMonitorState
Loads initial
monitor MSR
values.

vmcore/monitor/vmm/main/monMSR.c

MonMSR_LoadMonitorMSR

Loads one
monitor MSR
value (if not
masked).

vmcore/monitor/vmm/main/monMSR.c

VMware, Inc. VMware ESXi 8.0

Version 1.0 52

Function Description File

MonMSRLoadMSR

Loads one
monitor MSR
value (if not
masked).

vmcore/monitor/vmm/main/monMSR.c

MonMSR_SetMSRUnused

Marks an MSR
as not used by
the monitor
(such that the
monitor
considers any
value benign
and world
switch will not
reload monitor
values for this
MSR).

vmcore/public/monMSR.h

MonMSR_SetMSR

Marks an MSR
as used by the
monitor, setting
its value and
flags related to
switching. If the
value or flags
have changed
or if the flags
specify that the
MSR is not
shadowed, its
value is also
loaded.

vmcore/public/monMSR.h

MonMSR_UpdateMSR

The value of the
specified
monitor-used
MSR is updated
(but flags are
left unchanged).
If the existing
flags specify
that the MSR is
in use, the new
value is loaded.

vmcore/public/monMSR.h

WorldSaveFastMSRs

Saves monitor
MSRs
according to
flags.

vmkernel/main/x86/world.c

WorldRestoreFastMSRs

Loads monitor
MSRs
according to
flags.

vmkernel/main/x86/world.c

VMware, Inc. VMware ESXi 8.0

Version 1.0 53

Function Description File

WorldArchSharedAreaVcpuInit

Initializes
pointer to
world's
switchedMSR
variable for later
use during
world switch

vmkernel/main/x86/world.c

WorldSaveControlRegisters

Saves CPU
control registers
and "saves" VT
state (flushes
any active
VMCS).

vmkernel/main/x86/world.c

WorldSaveVTState

"Saves" VT
state (flushes
any active
VMCS).

vmkernel/main/x86/world.c

WorldRestoreControlRegisters

Restores CPU
control registers
and restores VT
state.

vmkernel/main/x86/world.c

WorldRestoreVTState
Restores VT
state (loads any
active VMCS).

vmkernel/main/x86/world.c

World_ArchExit

"Saves" VT
state (flushes
any active
VMCS) one final
time before the
world exits
permanently.

vmkernel/main/x86/world.c

VMKCallWork

Switches from
the VMM
context to the
vmKernel
context to
request the
specified call.

vmcore/monitor/vmm/platform/vmkernel/vmk_if.c

SwitchRootAndBackTovmKernel

Inner function
that switches
from the VMM
context to the
vmKernel
context to
request the
specified call.
May never
return, and may
also return
running on a
new CPU (with
'pcpuTainted'
set).

vmcore/monitor/vmm/platform/vmkernel/vmk_if.c

VMware, Inc. VMware ESXi 8.0

Version 1.0 54

Function Description File

HV_EnterMonitor

Called upon re-
entry to the
monitor to
restore HV state
of relevance. If
pcpuTainted is
set, affects
flushes of the
TLB for VNPT,
EPTP and all
ASIDs (see 4.2:
VMM HV
Memory
Management).

vmcore/monitor/vmm/hv/vt/hv-vt.c

4.8.7 Appendix A: Navigating VMM-VMK Entry Module Code

The code and header files implementing the module are used across multiple products and
CPU architectures. Only a subset of the code is of relevance to the TOE. This table
endeavors to simplify reading code and header files by explaining what is included and
excluded from the TOE. Terminology clarifying the above documentation is also provided.

Term or token Meaning
Included in

TOE?

vmx86_server Set to 1 if building ESX Yes

VMX86_SERVER (CPP token) #defined if building ESX Yes

SERVER_ONLY() Macro contents defined if building ESX Yes

HOSTED_ONLY() Not relevant to ESX, enclosed contents omitted No

vmx86_vmm Set to 1 if building VMM Yes

vmx86_ulm Set to 0 if building VMM No

ULM_ONLY() Not relevant to ESX, enclosed contents omitted No

vmx86_release Set to 1 if building for releases to customers Yes

vmx86_debug Set to 1 if building for debug builds No

vmx86_devel Set to 1 if building for internal developers No

VMM_BOOTSTRAP Set to 0 for general VMM run-time No

Files and directories containing
arm64

Not relevant to Intel/x86 product No

World_IsVMMWorld() True if the world is a VMM world Yes

World_IsKLMWorld() Always FALSE for TOE. No

VMware, Inc. VMware ESXi 8.0

Version 1.0 55

Term or token Meaning
Included in

TOE?

HVMSR* An MSR-switching subsystem not used for the TOE. No

MonMSRLoadHostState Not used in the TOE No

MonMSRSaveHostState Not used in the TOE No

MonMSRLoadHostMSR Not used in the TOE No

switchedMSRs Variable referenced via shared memory: world-switched MSRs. Yes

4.9 VMM SGX (SFR-NON-INTERFERING)

SGX is a CPU feature provided by Intel enabling workloads to run within an execution
context known as a Secure Enclave, provided by the CPU. Software outside a Secure
Enclave (including operating system software, hypervisor software and even guest kernel
and user mode software) cannot examine with or tamper with software or date inside the
Enclave. SGX Enclaves run within encrypted, protected memory known as an Enclave Page
Cache (EPC). SGX enclaves are created using EPC memory acquired via coordination with
system firmware, and then bootstrapped and entered using SGX-specific instructions in the
CPU.

The VMM provides Virtual SGX (hereafter "VSGX") to Virtual Machines. VSGX behaves as
SGX, and is implemented using the same EPC memory and the same instruction-level
interfaces provided by physical CPUs for SGX use. The SGX module implements VSGX.

To acquire EPC memory, the SGX module relies upon the VMM HV Memory Management
module (see 4.2). EPC memory is separate from but largely handled in the same manner as
non-volatile memory by the VMM HV Memory Management module. Virtual firmware
exposes EPC memory to VM software much as physical firmware exposes EPC memory to
operating system software on physical systems.

Most of the time, VSGX instructions and enclave code run directly on hardware without
exiting to VMM, but occasionally it is necessary to emulate an SGX instruction. To emulate
SGX instructions, the SGX module implements SGX-specific emulation functions which are
in turn called by the VMM Instruction Emulation module (see 4.5) as necessary.

SGX-related CPU state is world-switched by 4.8 (VMM-VMK Entry module).

Because the SGX module uses EPC memory provided by the VMM HV Memory
Management module and because this memory and SGX instructions are used for VM-
private execution (with no interaction with other VMs nor other host software), the SGX
module is SFR-NON-INTERFERING.

VMware, Inc. VMware ESXi 8.0

Version 1.0 56

4.9.1 Mapping to the Source Code (Interpreter support)

Function Description File

SGX_Init
Initializes VMM's SGX functionality. Allows VSGX
use by the VCPU thereafter.

vmcore/monitor/vmm/main/sgx_monitor.c

Interp_ENCLV
Interprets an ENCLV exit, emulating the
requested leaf function.

vmcore/monitor/vmm/cpu/interpSGX.c

Interp_ENCLS
Interprets an ENCLS exit, emulating the
requested leaf function.

vmcore/monitor/vmm/cpu/interpSGX.c

4.9.2 Appendix A: Bibliography for the Intel SGX References

Document Author / Company Date Notes

Intel® 64 and IA-32 Architectures Software Developer's
Manual Volume 3D: System Programming Guide, Part 4

Intel Corporation

www.intel.com

07/27/2022
Describes SGX in
great detail.

https://cdrdv2.intel.com/v1/dl/getContent/671269
https://cdrdv2.intel.com/v1/dl/getContent/671269
http://www.intel.com/

VMware, Inc. VMware ESXi 8.0

Version 1.0 57

Confluence Concordance (VMware internal use)

Section Page Version Page Link

4 8-4-2022 VMM Subsystem - vSphere Certification - VMware Core Confluence - vSphere
Certification - VMware Core Confluence

4.1 8-1-2022 4.1 VMM Hardware Virtualization - vSphere Certification - VMware Core
Confluence - vSphere Certification - VMware Core Confluence

4.2 8-4-2022 4.2 VMM HV Memory Management - vSphere Certification - VMware Core
Confluence - vSphere Certification - VMware Core Confluence

4.3 8-1-2022 4.3 VMM Host interrupts IDT APIC Map - vSphere Certification - VMware Core
Confluence - vSphere Certification - VMware Core Confluence

4.4 8-1-2022 4.4 VMM Hot Path - vSphere Certification - VMware Core Confluence -
vSphere Certification - VMware Core Confluence

4.5 8-2-2022 4.5 VMM Instruction Emulation - vSphere Certification - VMware Core
Confluence - vSphere Certification - VMware Core Confluence

4.6 8-3-2022 4.6 VMM Guest Interrupts - vSphere Certification - VMware Core Confluence -
vSphere Certification - VMware Core Confluence

4.7 8-3-2022 4.7 VMM Timekeeping - vSphere Certification - VMware Core Confluence -
vSphere Certification - VMware Core Confluence

4.8 8-4-2022 4.8 [vmKernel] VMM-VMK Entry - vSphere Certification - VMware Core
Confluence - vSphere Certification - VMware Core Confluence

4.9 8-3-2022 4.9 VMM SGX - vSphere Certification - VMware Core Confluence - vSphere
Certification - VMware Core Confluence

https://confluence.eng.vmware.com/display/VSPHERECERT/VMM+Subsystem
https://confluence.eng.vmware.com/display/VSPHERECERT/VMM+Subsystem
https://confluence.eng.vmware.com/display/VSPHERECERT/4.1+VMM+Hardware+Virtualization
https://confluence.eng.vmware.com/display/VSPHERECERT/4.1+VMM+Hardware+Virtualization
https://confluence.eng.vmware.com/display/VSPHERECERT/4.2+VMM+HV+Memory+Management
https://confluence.eng.vmware.com/display/VSPHERECERT/4.2+VMM+HV+Memory+Management
https://confluence.eng.vmware.com/display/VSPHERECERT/4.3+VMM+Host+interrupts+IDT+APIC+Map
https://confluence.eng.vmware.com/display/VSPHERECERT/4.3+VMM+Host+interrupts+IDT+APIC+Map
https://confluence.eng.vmware.com/display/VSPHERECERT/4.4+VMM+Hot+Path
https://confluence.eng.vmware.com/display/VSPHERECERT/4.4+VMM+Hot+Path
https://confluence.eng.vmware.com/display/VSPHERECERT/4.5+VMM+Instruction+Emulation
https://confluence.eng.vmware.com/display/VSPHERECERT/4.5+VMM+Instruction+Emulation
https://confluence.eng.vmware.com/display/VSPHERECERT/4.6+VMM+Guest+Interrupts
https://confluence.eng.vmware.com/display/VSPHERECERT/4.6+VMM+Guest+Interrupts
https://confluence.eng.vmware.com/display/VSPHERECERT/4.7+VMM+Timekeeping
https://confluence.eng.vmware.com/display/VSPHERECERT/4.7+VMM+Timekeeping
https://confluence.eng.vmware.com/display/VSPHERECERT/4.8+%5BvmKernel%5D+VMM-VMK+Entry
https://confluence.eng.vmware.com/display/VSPHERECERT/4.8+%5BvmKernel%5D+VMM-VMK+Entry
https://confluence.eng.vmware.com/display/VSPHERECERT/4.9+VMM+SGX
https://confluence.eng.vmware.com/display/VSPHERECERT/4.9+VMM+SGX

