
Advanced Object-Oriented Programming
Using C++

Module 2: C vs. C++ (Review), OOA / D / P with Rose

By

Nicholas Leuci

email: nick@noeticode.com

All Rights Reserved

mailto:nick@noeticode.com

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 1

C / C++ Review, Rational ‘Rose’

➢ A Very Brief History of OOP Languages

➢ C / C++ Keywords

➢ C / C++ Types

➢ C / C++ Operator Summaries

➢ C / C++ Precedence, Evaluation, and Associativity

➢ C / C++ Basic Grammar and Syntax

➢ C / C++ Constants and Character Sets

➢ Overview of Advanced C++

➢ Introduction to OOA, OOD, OOP with Rational Rose

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 2

A Very Brief History of OOP Languages

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 3

C vs. C++: C Reserved (Key) Words

C is a very compact, small language compared to C++.
Compare this set of keywords with those on the next slide:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 4

C vs. C++: C++ Reserved (Key) Words

and continue goto public try

and_eq default if register typedef

asm delete inline reinterpret_cast typeid

auto do int return typename

bitand double long short union

bitor dynamic_cast mutable signed unsigned

bool else namespace sizeof using

break enum new static virtual

case explicit not static_cast void

catch export not_eq struct volatile

char extern operator switch wchar_t

class false or template while

compl float or_eq this xor

const for private throw xor_eq

const_cast friend protected true

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 5

C vs. C++: Some Type Bit-Resolutions
Remember that the Bit-Resolution for base types is directly related

to the underlying hardware architecture. Here are the sizes of

fundamental types for MS DOS / WIN32 (Intel x86):

Type Size

char, unsigned char, signed char 1 byte

short, unsigned short 2 bytes

int, unsigned int 4 bytes

long, unsigned long 4 bytes

float 4 bytes

double 8 bytes

long double 8 bytes

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 6

C vs. C++: Built-in (Standard) Types

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 7

C vs. C++: Built-in (Standard) Types
Category Type Semantics

Integral char

Type char is an integral type that usually contains members of the execution

character set — in Microsoft C++, this is ASCII. The C++ compiler treats variables

of type char, signed char, and unsigned char as having different types. Variables of

type char are promoted to int as if they are type signed char by default.

 short

Type short int (or simply short) is an integral type that is larger than or equal to the

size of type char, and shorter than or equal to the size of type int. Objects of type

short can be declared as signed short or unsigned short. Signed short is a synonym

for short.

 int

Type int is an integral type that is larger than or equal to the size of type short int,

and shorter than or equal to the size of type long. Objects of type int can be declared

as signed int or unsigned int. Signed int is a synonym for int.

 long

Type long (or long int) is an integral type that is larger than or equal to the size of

type int. Objects of type long can be declared as signed long or unsigned long.

Signed long is a synonym for long.

Floating float Type float is the smallest floating type.

 double
Type double is a floating type that is larger than or equal to type float, but shorter

than or equal to the size of type long double.

long

double
Type long double is a floating type that is equal to type double.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 8

C vs. C++: Unary and Binary Operators
C includes the following unary operators:

Symbol Name

– ~ ! Negation and complement operators

* & Indirection and address-of operators

sizeof Size operator

+ Unary plus operator

++ -- Unary increment and decrement operators

Binary operators associate from left to right. C provides the following binary operators:

Symbol Name

* / % Multiplicative operators

+ – Additive operators

<< >> Shift operators

< > <= >= == != Relational operators

& | ^ Bitwise operators

&& || Logical operators

, Sequential-evaluation operator

The conditional-expression operator has lower precedence than binary expressions and

differs from them in being right associative.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 9

C vs. C++: Operator Precedence

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 10

C and C++: Complete Operator Set

Scope Resolution: Multiplicative: Logical:

Scope resolution: :: Multiplication: * Logical-AND: &&

Postfix: Division: / Logical-OR: ||

Array element: [] Modulus: % Assignment:

Function call: () Additive: Assignment: =

Type cast: (type) Addition: + Addition: +=

Member selection: . or –> Subtraction: – Subtraction: –=

Postfix increment: ++ Shift: Multiplication: *=

Postfix decrement: –– Left shift: << Division: /=

Unary: Right shift: >> Modulus: %=

Indirection: * Relational & Equality: Left shift assignment: <<=

Address of: & Less than: < Right shift assignment: >>=

Logical-NOT: ! Less than or equal to: <= Bitwise-AND: &=

One's complement: ~ Greater than: > Bitwise-exclusive-OR: ^=

Prefix increment: ++ Greater than or equal to: >= Bitwise-inclusive-OR: |=

Prefix decrement: –– Equal: == Conditional:

sizeof Not equal: != Conditional: ? :

new Bitwise: Pointer to Member:

delete Bitwise-AND: & Pointer to member: .* or –>

Comma: Bitwise-exclusive-OR: ^ Reference:

Comma: , Bitwise-inclusive-OR: | Reference: &

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 11

C vs. C++: Integer Operations

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 12

C vs. C++: Float Operations

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 13

C vs. C++: Rational Number Operations

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 14

C vs. C++: C++ Operator Precedence

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 15

C vs. C++: C++ Operator Associativity

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 16

C vs. C++: Statement Types

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 17

C vs. C++: Statement Types (2)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 18

C vs. C++: Statement Types (3)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 19

C vs. C++: Std. C String Functions

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 20

C vs. C++: Std. C “Unbuffered” File I/O

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 21

C vs. C++: Std. C “Buffered” File I/O

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 22

C vs. C++: Std. C “Buffered” File I/O (2)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 23

C vs. C++: Std. C Memory Management

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 24

C vs. C++: Std. C “printf” Conversions

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 25

C vs. C++: C “printf” Conversions (2)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 26

C vs. C++: C “printf” Conversions (3)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 27

C vs. C++: Implicit Type Conversions

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 28

C vs. C++: “Storage Class” Comparison

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 29

C vs. C++: C struct Syntax

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 30

C vs. C++: C union Syntax

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 31

C vs. C++: C ‘Pointer’ Syntax

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 32

C vs. C++: Arrays == Pointers

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 33

C vs. C++: C Preprocessor Directives

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 34

C vs. C++: Built-in C Constants

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 35

C vs. C++: Built-In ASCII Character Code

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 36

C vs. C++: Built-in ASCII Characters (2)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 37

C vs. C++: Built-in ASCII Characters (3)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 38

C vs. C++: Built-in ASCII Characters (4)

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 39

Overview of Advanced C++
How does C++ differ from C?

C++ is very, very large.

C++ fully contains C.

C is easy to learn.

C is very small.

C is hard to master.

C++ is easy to master.

C++ is harder to learn.

C is very weakly typed.

C++ is more strongly typed.

C and C++ are polar opposites.

C is always accessible inside C++.

C language

C++ language

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 40

Overview of Advanced C++

Essential Elements of C++ not in C:

1. Function prototypes (in ANSI C)

2. Function prototypes with unspecified parameters (in ANSI C)

3. Pointers to void and functions that return void (in ANSI C)

4. Comment delimiter to end of line

5. Name of a struct, enum, union, or class is a type name

6. Declaration within a block is a statement

7. Scope resolution operator

8. Const specifier (in ANSI C)

9. Anonymous unions

10. Explicit type conversions

11. Overloading of function names

12. Default values for function parameters

13. Reference pointers

14. Inline specifier

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 41

Overview of Advanced C++

Essential Elements of C++ not in C (continued):

15. New and delete operators

16. Class keyword and Encapsulation and Abstraction

17. Struct as a special case of Class

18. Constructors and Destructors

19. Private, Protected, Public access controls

20. Objects and messages

21. Friends

22. Overloading of operators and functions in classes

23. Inheritance (derived classes)

24. Polymorphism and virtual functions

25. Stream I/O

26. Exceptions

27. Templates, Standard Template Library

28. Logical Scope

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 42

Overview of Advanced C++

C++ is based on ANSI C (NOT ‘K&R’ C). The main features of

ANSI C now standard in C++ include:

 Function prototypes -
C++ requires full argument types for ALL function parameters and

return types, which are ALWAYS checked:

double vector_sum(float vector[], int size) { … return sums; }

 Function prototypes with unspecified parameters -
int count(int rows[],...); /*0, 1, or more args OK after first arg*/

 Pointers to void and functions that return void -
void incr(void); /* no return value, no parameter */

int * pi = &X; char * pc = “Hello World”;

void * pvi = pi; void * pvc = pc; printf(“%s %d ”, *pvc, *pvi);
/* all standard pointers can be reliably converted to void * pointers and

back, without losing data or meaning. */

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 43

Overview of Advanced C++
 Comment delimiter to end of line -

In addition to the C block-oriented comment delimiters (/* .. */),

C++ also has a new comment delimiter, which has effect from the

point encountered in the source until the end of that current line:

float rate = 0.0825; // this is a comment to the end of line

 Name of a struct, enum, union, or class is a type name -
In C, a typedef statement is needed to convert any user defined

element into a type. This mechanism still exists in C++.

However, ANY definition of a user-defined type is

AUTOMATICALLY a type definition, not requiring an

additional typedef statement.

struct Rate_Adj { float rate; int term; /* etc. */ …};

Rate_Adj rates[MAX_R]; // declare an array of the new type

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 44

Overview of Advanced C++
 Declaration within a block is a statement -
C++ allows a declaration of any kind of data anywhere: after code

statements, inside of ANY kind of block structure, and even at

the head (initialization statement) of a loop.

…

x = y; float pi = 3.1415; { struct lesson { … } new_lesson;}

for (int j = 0; j < MAX_V; j++) { … }

…

 Scope resolution operator (‘::’) -
C++ has an operator that allows a variable or function to be ‘fully

qualified’ to its proper defintion or outer scope, to resolve naming

conflicts and other object identity issues.

int x = 3; // This has an outer scope

{ int x = 9; printf(“local x=%d, outer x=%d”, x, ::x); }

// ‘::x’ fully qualifies ‘x’ to its outer, not local scope

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 45

Overview of Advanced C++
 const specifier – (also in ANSI C)
C++ has a mechanism for creating constants: the ‘const’ qualifier.

This allows any declaration to be made constant. Data

declarations qualified as const become read-only. Functions

qualified as const allow no ‘side-effects’. Function parameters

prototyped as const can’t be changed inside the function.

const float pi = 3.1415; const int mile = 5280;

const char * greatest_state = “Hawaii”;

int query_account(const int account_num) const;

 Anonymous unions –

Unions without a name can be defined anywhere a

variable or field can be defined.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 46

Overview of Advanced C++
 Explicit type conversions –
Any valid type name can be used as a function to convert any

argument type to the base type name.

int points = (int) (5.0 100); // in C: points == 500

int points = int(5.0 100); // in C++ points == 500

account new_acc = account((PRIME + 2.0) RateFactor);

 Overloading of function names –
The same function name have many different expressions, via a

mechanism called ‘name mangling’. Each overloaded function

must have a unique prototype signature.

compute_sum (int x, int y);

compute_sum (int x, float y);

compute_sum (float x, float y);

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 47

Overview of Advanced C++
 Default values for function parameters –
Any function can have default values specified in its parameter list;

when called with a value, the default is ignored, and when called

without a value, the default is used.

some_func(int x, float varflo=1.17){;} // 2nd arg has a default

some_func (some_int); // this call uses the default

some_func (some_int, 3.1415); // this doesn’t use default

 Reference pointers –
C++ has a new pointer type, the ‘reference pointer’. Simply stated, a

reference pointer must always be bound to an ‘L-value’, and

grammatically, it is coded as though it was an ALIAS of the

actual value it is bound to.

int x=0; int & ref = x; // ref is a reference bound to int x

ref++; printf(“%d”, x); // this prints ‘1’, not ‘0’

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 48

Overview of Advanced C++

 inline specifier –

C++ has the means to substitute a code body in place of a function

call, allowing for optimized performance. Unlike a macro, both

the prototype and function body are seen by the compiler.

inline int max_xy(int x, int y)

{ if x > y ? return x: return y; }

 new and delete operators –

C++ has new, built-in operators for dynamic memory management,

in addition to the standard C malloc library:

new - allocates an object dynamically from the heap

delete - releases an object back to the heap

delete[] - releases arrays of objects, including strings

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 49

Overview of Advanced C++
 class keyword and Encapsulation and Abstraction –

C++ has the keyword ‘class’ to allow creating user-defined types

that have all the properties of objects (Modularity,

Encapsulation, Abstraction, Inheritance). Functions can be

defined in a class.

class my_new_class { float rate; int term(); …};

 struct as a special case of class –

C++ was designed specifically to be backwards compatible with

C. It was essential that C code compile and run in C++ with

the same behavior. In C++, structs have their old C meaning,

plus they have an EQUIVALENT representation of a class.

struct my_new_struct { float rate; int term(); …};

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 50

Overview of Advanced C++
 Constructors and Destructors –
A class created in C++ always has special functions inside of it

dedicated to instantiating and removing class objects from

memory.

class my_new_class { …

my_new_class() {;} // this is a class constructor

~ my_new_class () {;} // this is a class destructor

…};

 private, protected, public access controls –
A class created in C++ always has access controls to regulate how

the class object is accessed at runtime.

class my_new_class { …

private: float rate; // private means no external access

public: float get_rate(); // public allows external access

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 51

Overview of Advanced C++
 Objects and messages –
The basic element of C++ is the object. An object responds to

messages. A message is a public interface to an object, a method

that is used to query and update. All ‘public’ functions defined

in a class are methods that allow objects to ‘hear’ messages.

 Friends –
A class itself or a class member can be declared as a ‘friend’ to

another class, allowing internal access into that other class.

 Overloading of operators and functions in classes –
Basic arithmetic, logical and comparative operators can be

overloaded as functions for classes, allowing customization for a

specific application.

int operator+ (int x, my_new_class * myc) {

// a new meaning of ‘+’ for the class my_new_class

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 52

Overview of Advanced C++
 Inheritance (derived classes) –
A new class can be created by deriving it from an existing class.

This mechanism is called ‘inheritance’, and it is a powerful

engine of Reusability in all true Object-Oriented Programming

Languages.

my_child_class : my_parent_class { … };

// creates a new child class from an existing parent class

 Polymorphism and virtual Functions –
Inheritance can be used to create ‘Polymorphism’, whereby the

same interface in a parent class is bound to many different

behaviors in child classes. This is done via ‘virtual functions’.

class my_parent_shape_class { …

virtual int draw() = 0; // this virtual function can have many

// differing child class implementations

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 53

Overview of Advanced C++
 Stream I/O –
C++ has a completely new means for accomplishing input and

output. Stream I/O uses dedicated objects for input, output, and

input/output. These objects have an intuitive use, hide all

hardware details, apply to all base (built-in) types, and are

readily extensible to user-defined types.

#include <iostream.h>

cout << “Hello, world.”;

 Exceptions –
C++ has new keywords and mechanisms for Active Exception

Handling, and other new features for Memory Management.

try { … throw(Error_Object); }

catch (Error_Object) {

invoke_error_handler(); }

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 54

Overview of Advanced C++
 Templates, Standard Template Library –

C++ allows creating classes and functions that can have any type

instantiated into them. Templates allow defining type-

independent sorting, searching, filtering, and manipulating

objects and methods. The Standard Template Library (STL) is a

huge C++ extension with a vast assortment of reusable templates.

 Logical Scope –

C++ allows creating multiple, independent logical scopes eliminating

name collisions and promoting large scale development.

namespace my_new_scope {

int x; fn(); Object_t Ob; }

using my_new_scope;

cout << x << “\n” << fn() << “\n” << Ob << “\n

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 55

OOA / D / P with Rational ‘Rose’
We have previously described in some detail the Booch Object

Model. Grady Booch’s pioneering work in developing a rigorous

Object Model was followed by establishing a sound methodology

and process for a complete life-cycle approach to Object-

Oriented (OO) software development. Included with this is the

Booch Notation, the famous (or infamous) ‘Cloud Diagrams’.

This body of work is documented in the second text for this class.

Other people besides Booch were developing OO notations and

methodologies. In the mid 90s a polyglot of notational,

methodology, and tool inconsistencies and incompatibilities

occurred. Grady Booch was the first at Rational Corp., where he

is Chief Scientist, to call for a Unified approach to OO

development. Booch worked with many others to establish a new

uniform OO development standard – UML.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 56

What is UML?

Booch not only provided a rigorous notion of an Object

and Object Model, but he also added useful features

for real time embedded development. Ivar Jacobson’s

Use Cases became widely used as Analysis for

capturing and modeling requirements for OOD.

James Rumbaugh’s OMT added data modeling

capability, and became widely used by corporations

and institutions managing large sets of data (banks,

insurance companies, etc.).

Rumbaugh and Jacobson all joined Booch at Rational

Corp., and these ‘Three Amigos’ co-developed a new

unified methodology and notation: Unified Modeling

Language (UML).

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 57

Unified Modeling Language

Rational put UML in the public domain, and as of this

writing, it has gone through four major iterations:

1.0, 1.1, 1.2, and 1.3. These feature changes are

summarized in Fowler’s ‘UML Distilled, 2e’. By

placing UML in the public domain, major OO tool

vendors readily adopted it, and it has gained very

rapid acceptance.

The advance is basically eliminating the polyglot

confusion and getting OO stakeholders on the same

page, with consistent terminology and notation. UML

as a methodology is a synthesis of Use Cases, OMT,

and Booch. UML as a notation is very similar to

OMT, with some features from Booch. Rational has

productized UML in its ‘Rose’ CASE tool.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 58

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 59

Unified Modeling Language
A Computer-Aided Software Engineering (‘CASE’) tool is meant to

automate the design and production of SOURCE CODE. Thus,

Rational Rose is a tool that allows Object Modeling using a

standard OO notation. It is in one sense a Drawing tool: Rose

provides palette of controls for visualizing Objects in a variety of

hierarchies and associations, with full attributes, including state

changes, group interactions, messaging, etc. These drawings are

captured in a ‘Repository’, the Rose ‘.mdl’ file.

The Repository is a proprietary database containing OO metadata;

it is data about the data in your Object Model. The real power of

Rose is in capturing the metadata in your Object Model. Rose as

a Repository CASE tool is language and notation independent, as

it allows an Object Model to be visualized in many notations

besides UML, and it can generate classes for many OOP

languages, besides C++.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 60

UML and Booch in Rose
Rose is also a Forward and Reverse Engineering tool (FRE).

‘Forward Engineering’ means to build an Object Model in the

Repository, refining the model until it is suitable, and then

generating the source code: the set of C++ classes necessary as a

nucleus to grow an application. Rose does not build an

application; it generates the source code to create the objects in

your Object Model, then you compile them in C++.

‘Reverse Engineering’ means to start with a set of legacy C++ classes

and input them into Rose, which then builds an Object Model

and saves it into a Repository, for later refinement.

This full cycle of Forward and Reverse Engineering is also called

‘Round Trip Engineering.’ Rose supports both Booch and UML

diagrams interchangeably, as well as OMT. In this course, the

examples presented will be in the Booch notation.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 61

UML and Booch in Rose
Because UML is in the public domain, there are many tools besides

Rose which use UML as both a methodology and a notation. A

comparison of these tools is interesting, but beyond the scope of

the current course.

Here we will focus on Booch as productized by Rational in the ‘Rose

Demo Edition’. In the next weeks we will examine the notation

and methodology rigorously, using Rose to generate the various

drawings, capture the Object Model in the Repository, and

generate the C++ classes.

Rose is part of a family of tools offered by Rational, including tools

to manage requirements, configuration, distribution, software

defects, etc. These other tools are also outside of the scope of the

current course.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 62

Booch Notation in Rose
UML was created by the ‘three Amigos’: Grady Booch (‘Booch’),

James Rumbaugh (‘OMT’), and Ivar Jacobson (‘Use Cases’).

Rumbaugh’s Object Modeling Technique (OMT) is a direct parent

of UML, and the notations are very close. Where OMT differs is

in its emphasis on data modeling, a subordinate feature of UML.

Booch’s notation added real time and object concurrency features,

which were missing in OMT, plus structural and process views of

Object-Oriented Software Development.

Rose allows an Object Model to be drawn in any of these notations,

and the user interface for the tool is similar; only the drawing

palette some modeling language features change when the model

is shown in another notation.

In some ways, UML is a simplification of Booch, which is very large

notation and methodology.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 63

Booch Method and Notation
Booch formulates two views of a system under development: the

Static Model, which shows architecture and has both a Logical and

Physical subview, and the Dynamic Model, which shows behavior.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 64

Booch Process
Booch formulated two development processes for Object-Oriented

Analysis and Design, Macro and Micro Processes.

Macro Process

• Establish core requirements (conceptualization).

• Develop a model of the desired behavior (analysis).

• Create an architecture (design).

• Evolve the implementation (evolution)

• Manage postdelivery implementation (maintenance)

Micro Process

• Identify classes and objects at a given level of abstraction.

• Identify the semantics among these classes and objects.

• Identify the relationships of these classes and objects.

• Specify the interface and then the implementation of these classes

and objects.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 65

Booch Notation: Class Diagrams
Booch Class Diagrams show the existence of Classes and
their relationships in the logical view of the system.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 66

Booch Notation: Class Relationships

Relationships are shown as lines between ‘clouds’.

‘Adornments’ provide extra detail for the

diagrammed relationship.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 67

Booch Notation: Class Adornments
Booch is unique in providing visual icons for important properties

that are represented textually in other notations.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 68

Booch Notation: Object Diagrams
Booch Object Diagrams show the existence of Objects and their

relationships in the logical view of the system. Note the fine-

grained Synchronization (concurrency) adornments.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 69

Booch Notation: Module Diagrams

Booch Module diagrams show the allocation of classes and

objects to modules in the physical view of the system.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 70

Booch Notation: Process Diagrams

Booch Process diagrams show the allocation of processes

to processors in the physical view of a system. This is

similar to a system ‘riser’ and a precursor to the

deployment diagram in UML.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 71

Booch: State Transition Diagrams

Booch State Transition Diagrams are a key element of the

Dynamic Model, and were incorporated directly from

‘Harel’ Diagrams.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 72

Booch: Interaction Diagrams
Booch Interaction diagrams trace the evolution of a ‘scenario’, a

sequence of interactions among objects, and they also specify a

‘contract of responsibilities’ among objects.

Nick Leuci, Advanced OOP Using C++: C/C++, Rose. Slide # 2 - 73

Rose and C++
Rose as a product has modules for many languages, including C.

The Rose Enterprise tool comes with C++, Java, Visual Basic and

Oracle language modules; additional modules can be added, and

there is a large 3rd party market for them. The Rose Demo

Edition used in this class only supports C++ code generation in a

Win32 (Windows NT, Windows 95, Windows 98) environment.

Once an Object Model is built in Rational Rose, it is a simple matter

to generate the C++ source code. Many programmers are

surprised by code that Rose generates. In general, code

generation is weakest part of CASE technology, and this is true

for Rose as well. There are large R&D projects ongoing to

improve CASE code generation. In this course, we will not

concern ourselves with this issue. We will show C++ coding

strategies diagrammed in Booch, and nothing more.

